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_ 1.0 SUMMARY '

This report contains the development of an unstructured grid-based finite-volume
integration scheme for solving the time-domain Maxwell’s equations to study a myriad of
problems in electromagnetics. The principal application of this technology is the prediction
of radar cross section (RCS) of low observable platforms. This work was performed under
the AFOSR contract F49620-93-C-0066.




1.0 INTRODUCTION

The design and development of modern aerospace configurations increasingly require
better understanding, management and exploitation of ever more complex physical phe-
nomena in different disciplines such as fluid dynamics, structural mechanics, propulsion,
controls, and electromagnetics that all play an interdisciplinary role. The traditional ap-
proach of serial design by individual disciplines which cannot account for coupling effects
will not only result in poor design but also is not cost effective. Extensive simulations
of the various complex phenomena are required to understand the interdisciplinary role
in design. Along with advances in experimental simulations, with the emergence of the
supercomputers, both conventional (vector Cray-like architectures) and massively parallel,
the computing technology is beginning to play an ever increasing role in design simulations.
Both government and industry view ‘Computational Sciences’, a discipline that exploits
advances in numerical algorithms development and the increasing power of supercomput-
ers, super-minicomputers and graphics workstations, as a critical, potentially efficient and
cost-effective technology for advanced design.

The development of a computational environment that encompasses different dis-
ciplines for multidisciplinary studies as described in Fig. 1 requires that the following
computational capabilities be properly matured within each discipline.

1) Computational Fluid Dynamics (CFD)

-

— Turbulence modeling
— Transition

— Finite-rate chemistry
— Algorithms for incompressible to hypersonic Mach number range
— Unsteady and separated flows

2) Computational Electromagnetics (CEM)

— Proper implementation of Maxwell’s equations with general material properties
— Formulation and implementation of different boundary conditions

3) Computational Structural Mechanics (CSM)

— Accurate finite-element models for static and dynamic flexible effects
— Failure and fatigue analysis accounting for material grain structure

The development of computational capabilities in all these disciplines critically de-
pends on the following technologies.

1) Geometry and Grid Setup

— Three-dimensional geometry modeling
— Structured and unstructured grid cell representation
— Pre and post processing for visualization




2) Computer Architectures

— Vector /parallel coarse grain machines such as the Cray C-90 with 16 CPUs

— Massively parallel machines, both SIMD (Single Instruction Multiple Data) and
MIMD (Multiple Instruction Multiple Data) '

— Advanced graphics workstations

One of the computational disciplines that has been a supercomputing pace setter for
the last three decades is CFD. This technology, which started with the development of
the transonic small-disturbance theory in the late 60’s, has matured both in algorithm
and code development to the point of today being able to solve the time averaged Navier-
Stokes equations for predicting the flowfield over a complete fighter. Today, CFD is playing
a critical role in the development of next generation fighters and the National Aerospace
Plane, though only in single discipline mode. The development of a multidisciplinary
computational environment can significantly benefit by applying many of the attributes of
CFD to other disciplines such as CEM.

1.1 Attributes of CFD

1) The fluid dynamic equations are usually cast in conservation form either as differen-
tial or local integral equations conserving mass, momentum, and energy fluxes, thus
allowing for numerical capture of flow discontinuities such as shocks and slip surfaces.
Equations representing the physigs in other disciplines, for example Maxwell’s equa-
tions in electromagnetics, can be cast in similar conservation forms for conservation
of appropiate fluxes. ‘ '

2) Recent developments of hyperbolic algorithms for solving the time-domain Euler equa-
tions are based on the characteristic theory of signal propagation and are referred to
as the ‘upwind’ schemes. For hyperbolic equations, the upwind based schemes can
be constructed to provide the right amount of numerical dissipation to achieve both
stability and accuracy. Current state of the art in numerical algorithms is based on
Essentially Non Oscillatory (ENO) interpolation schemes that can provide arbitrarily
high order of accuracy for arbitrary cell shapes such as hexahedral, triangular prism,
and tetrahedral elements.

'3) For treatment of complex aerospace configurations, CFD methods usually employ
either a structured grid based body-fitted coordinate system or an unstructured finite-
element grid setup for ease in implementing the various boundary conditions. Similar
numerical geometry and grid setup procedures are equally applicable to modeling
complex problems in other disciplines.

4) Pre and post processing capabilities running on advanced graphics work stations are

effectively employed to visualize and animate the geometry/grid and solution.

The goal of ‘Computational Sciences’ is to effectively employ the many advances in
CFD coupled with emerging supercomputer architectures with expected teraflops (trillion
floating point operations per second) performance to mature the computational technology

3




in different disciplines and be able to perform multidisciplinary studies critical to advanced
design. —-

1.2 Objectives

Toward establishing a computational environment for performing multidisciplinary
studies, the initial goal is to advance the state-of-the-art in CEM with the following specific
objectives. :

1) Apply algorithmic advances in CFD to solve Maxwell’s equations in general form to
study scattering (radar cross section), radiation (antenna), and a variety of eletro-
magnetic environmental (electromagnetic compatibility, shielding, and interference)
problems of interest to both the defense and commercial community.

2) Mature the CEM technology to the point of being able to perform coupled CFD/CEM
optimization design studies.

3) Establish the viability of MIMD massively parallel architectures for tackling large
scale problems not amenable to present day supercomputers.

1.3 Computational Electromagnetics (CEM)

The ability to predict radar return from complex structures with layered material
media over a wide frequency range (100 MHz to 20 GHz) is a critical technology need
for the development of stealth aerospzce configurations. Traditionally, radar cross section
(RCS) calculations have employed one of two methods: high frequency asymptotics, which
treats scattering and diffraction as local phenomena; or solution of an integral equation
(in the frequency domain) for radiating sources on (or inside) the scattering body, which
couples all parts of the body through a multiple scattering process. A third approach
is the direct integration of the differential or integral form of Maxwell’s equations in the
time-domain.

The time-domain Maxwell’s equations represent a more general form than the
frequency-domain vector Helmholtz equations, which are usually employed in solving scat-
tering problems. A time—domain approach can, for instance, handle continuous wave
(single frequency) as well as a single pulse (broadband frequency) transient response.
Frequency-domain-based methods usually provide the RCS response for all angles of inci-
dence at a single frequency, while time-domain—based methods provide solutions for many
frequencies from a single transient calculation. Also, in a time-domain approach, one
can consider time-varying material properties for treatment of active surfaces. By using
Fourier transforms, the time~domain transient solutions can be processed to provide the
frequency-domain response. Frequency-dependent (dispersive ) and anisotropic material
properties can also be included within the time-domain formulation.

CEM is a critical technology for the United States to maintain its leadership in the
advancement of future aerospace development through supercomputing. As we transition
from the present Gigaflops to the next generation Teraflops computing, CEM will become
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integral to aerospace design not only as a stand alone technology but also as part of the
multidisciplinary coupling that leads to well optimized designs.

1.4

CEM Issues

Proper development of a CEM capability appropriate for all aspects of aerospace

design must consider various issues associated with electromagnetics. Some of them are:

1.

Physics of Maxwell’s equations

differential and integral forms of Maxwell’s equations suitable for numerically satisfy-
ing tangential field flux conservation

flexibility in implementing total field, scattered field, and diffracted field forms de-
pending on the nature of the problem being solved

incorporation of various source terms

Material properties

perfectly conducting surfaces

lossy/lossless € and p

resistive sheet (conductivity ¢ and thickness d)
impedance layer

anisotropic media i

chiral media

dispersive media — €(w) and p(w)

nonlinear materials

Boundary conditions

perfectly conducting, n x € = 0 (Electric wall) and n x H = 0 (magnetic wall)
—_ accurate evaluation of n X H on the PC surface is crucial

material interface, |n x €| and |n x H| are zero
— algorithms must account for any variation in € and p at interface

resistive sheet, n x £ and n x H jump across RS

impedance layer, n xn x £ = —nnxH
— implementation in time-domain involves convolution integrals

nonreflecting farfield
—_ characteristics based hierarchy of absorbing conditions for total field, scattered

field, and diffracted field formulations
periodic

zero flux (collapsing cell faces)

Algorithmic issues




unstructured grid-based finite-volume algorithms that include structured grids as a
special case
stability and accuracy of schemes using spectral techniques

construction of higher—order schemes including at boundaries using polynomial rep-
resentations for electric and magnetic field variations inside a general polyhedron cell

implicit and explicit schemes with approprite space and time discretization

. Gridding

geometry modeling using CAD packages

structured or unstructured surface grids using advancing front technique
volume grids using hexahedral, prismatic or tetrahedral cells
optimization routines for achieving grid quality and smoothness

adaptive gridding

. Massively parallel computing issues

domain decomposition and load balancing

internodal message passing with minimum communication delays
synchronization for time accurate computation

measure of MFLOP rating

scalability measures

pre and post processing in parallel environment

transportability

. _User Issues

problem set up and boundary conditions — how flexible and general is the code?
geometry and grid set up time, resolution requirements and computational domain
size

internal consistency check for spotting user errors and dignostic measures

run enviroment

— selection of number of nodes

— load balancing and domain decomposition
— automatic termination criteria

— complete monostatic runs

— post processing routines - FFT, plotting,- -

Reliability of solution

. Validation and Applications




e code validation on Electromagnetic Code Consortium test cases and canonical solu-
tions-

e radar cross section of low observable platforms

¢ antenna performance

e Microwave monolithic integrated circuit (MMIC) modeling and photonic band gap
periodic structures

e electromagnetic environmental effects (E*), such as EMP, EMI, and compatibility
problems

e bioelectromagnetics such as microwave hyperthermia cancer treatment of humans and
effects of cellular phones

e multidisciplinary problems invloving optimization of performance for electromagnet-
ics (stealth), acrodynamics (flow management), structures (fatigue and failure), and
controls




2. MAXWELL’S EQUATIONS

A general theoretical framework for electromagnetic scattering in the time domain is
provided by Maxwell’s equations relating the spatial derivatives of the electric and magnetic
fields to their time derivatives and to both external and internal sources. In conventional
SI notation, the Maxwell curl equations in the presence of polarizable materials are written
as:

. OB
VXE+§'-—0, (1)
. 8D -
- = 2
VxH 5 J (2)

where E and H are the electric and magnetic field intensities, Tespectively, while D and
B are the electric displacement and magnetic induction, and J is the electric current of
“free” charges (to be defined below). These equations are supplemented by two divergence
conditions:

V-B=0 , and (3)

where p is the volume density of “free” electric charges. Taking the divergence of Eq. (1),

one finds that &(V - B)/8t = 0, so that Eq. (3) can be treated as an initial condition on
the fields that will automatically hold at all later times.

Similarly, the divergence of Eq. (2) gives:
V.-J+8(V-D)/ot=0 , (5)
while conservation of the “free” electric charge requires that
V-J+0p/0t=0 . (6)
Combining Eq. (5) and Eq. (6) gives:
&V-D-p)/ot=0 , ()

so that if V- D = p at some initial instant, Eq. (4) will also hold at all future time.

Each polarizable material is characterized by a volume density of electric dipole mo-
ment P and magnetic dipole moment M in terms of which the electric displacement D
and the magnetic field intensity H can be written as:

-

+P (8)
1§—J\7I , (9)

(W]}
Il

T
1l
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where ¢ is the permittivity of free space (= 8.854X 10~12 farad/meter in SI units), and po
is the permeability of free space ( = 47 X 10~7 henry/meter in ST units). The polarization:
P and M in general can arise from many types of forces on the material medium, but in
radar scattering the most important of these is a linear response to the local electric field

—

E and magnetic induction B. The same is true of the current of “free” charges J induced
by these fields.

In this limit; the most general form for the response R (standing for either P, M,or

J) can be written as:
t
R(7 ) = B(7,0) + / [reFt = PVEG ) - nBED)dr . (0)
0

Here, the properties of the material are lumped into the susceptibilities r. and ry. Each
ro is a tensor, reflecting the fact that the response R need not be parallel to the applied
feld. Note also that each ro depends only on the time difference, t — 7, so that the
integral in equation (10) is a simple convolution. The term R(7,0) includes any static,
field-independent polarization or current, as one finds in permanent magnets or supercon-
ductors, as well as any polarizations due to fields present before ¢t = 0.

These additional relations, together with the definitions D = «FE + Pand H =

— —

ﬁB — M, constitute a complete linear system of equations that can be solved for the

development of E-"_‘a.nd B from some initial state that satisfies the subsidiary conditions
V.B = 0and V-D = ps. Equations{8), (9), and (10) together already contain implicitly
the boundary conditions on the fields that must be satisfied, for instance, at the interface
between material (P and M nonzero) and vacuum (P = M =0).

In many cases of interest, the time scale for the development of E and B is much
longer than the time it takes for the material to build up its response. In this limit, the
relations (10) become approximately instantaneous, and one can write:

15 = pcf—f +pm§ R
M=mkE+mmnB , (11)
J=3j.E+jmB ,

which greatly simplifies the solution process. For ordinary materials, a further simpli-
feation comes from the fact that a magnetic field does not produce either an electric
polarization (pm = 0) or a local current (jm = 0), nor does an electric field induce any
magnetization (m. = 0). (Materials for which pm and m, are nonzero are called chiral.)

This allows one to write directly simple expressions for D, H, and J:

5=60E+peﬁéeE_“ s

FelB_m.BRuB | (12)
Ho

J=0¢E ,




in terms of new tensor material parameters € (the perm1tt1v1ty), (the permeability), and
o (the conductivity), eliminating the need to calculate P and M separately. Equation (2)
then becomes:

v x (15) = 562 () 408 (1)
while equation (1) is unchanged. '

Because equations (1), (2), and (10) are linear, one can Fourier transform these equa-
tions with respect to time, making use of the convolution theorem to obtain a form similar
to (11), (12), and (13):

Pw)=pEW) ; Dw)=&w)EwW)
M) = fim@)B(w) ; H(w)=i"(w)BWw) (14)
VxE=iwB ; VxH=-iwtE+GE
where we have written A(w) = [ et A(t)dt for every quantity in (1), (2), and (10).

This is the standard form in which the material parameters €, y, and o are measured and
reported, using applied fields of a well defined frequency w.
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3. GENERAL CONSERVATION-LAW FORM

For many problems in mathematical physics, the physical process to be modeled is
governed by an appropriate set of linear or nonlinear partial differential equations. For
example, many fluid dynamic processes are governed by the Navier-Stokes equations, and
the electromagnetic scattering from objects is modeled by Maxwell’s equations.

In general, many of these equations naturally lend themselves to a conservation form
representation given by:

Q¢+ & + Fy +G. = S(Source) , : (15)

where the dependent variable vector @, and the fluxes £, F, and G and the source S take
on different forms depending on the physical process being modeled. The integral form
of the conservation laws can easily be derived from the differential form by integrating
Eq. (15) with respect to z,y, z over any conservation cell whose volume is V:

8Q 086 OF 00 _ _z
///V(.B?+?a—aj-+-67+?$)dxdydz—///‘Idedydz—S . (16)

This can be rewritten in vector notation as:

%//[/dedyd&d—//[/(6-f)d:cdydz=§ . (17)

F=¢& +Fk+gl . (18)

In the above:

where j, k, and | are unit vectors along the z, y, and z directions, respectively.

Applying the Gauss divergence theorem, we can convert the volume integral into an
integral over the surface A that bounds the volume:

%(év)+/£(ﬁ-ﬁ>dA:§ . (19)

In the above equation, the cell average of the dependent variables is denoted by Q. The
outward unit normal at any point of the boundary surface of a cell has been denoted by

A=) + nygk + Rl
[ JyQdV
S (20)
JIfvav

The integral form of the conservation laws given by Eq. (19) defines a system of equations
for the cell average values of the dependent variables. In order to construct numerical
methods to solve the integral form of the conservation laws, one must be able to define cell
geometries, approximate the dependent variables, develop spatial discretization procedures,
and develop time integration procedures to update the cell averages, etc. There are many

O
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numerical algorithmic issues that come into play in devising a solution procedure to solve
either the differential form, Eq. (16), or the integral form, Eq. (19). Some of them are
1) implicit and explicit schemes, 2) stability and order of accuracy, 3) relaxation and
approximate factorization procedures, 4) central differenced and upwind schemes, 5) finite-
volume and finite difference schemes applied to a structured grid (usually for the differential
form), and 6) finite—element-like finite-volume schemes for an unstructured grid (applied
to the integral form) setup.

Application of Eq. (15) to many realistic problems requires a coordinate transforma-
tion to properly represent the physical domain of interest and to aid in the boundary
condition treatment.

Under the transformation of coordinates implied by:

T =t,f={(t,x,y,z), Ui =n(t7m,yaz)7 (= C(t,x,y,z) ’

Eq. (15) can be recast in the conservation form given by:

- +E&+Fy+Gc=8 , (21)

where: o

o= .

E= %—Q‘; %£+§Jlf+§é ;

?:%EQ+"7’£+%?+%Q , (22)

G= %Q+%’—£+%—J—'+cj—’g ,

5=%
where, in turn, J is the Jacobian of the transformation:

T =0(r6m, /065,47 = 3 (23)

and &, €z, &y, Mty Nz My, Nz Cty Coy Cy, and (; are the transformation metrics.

Associating the subscripts j, k, ! with the £, 7, { directions, a numerical approximation
to Eq. (21) (as well as Eq. (19)) may be expressed in the semidiscrete conservation law
form given by:

((év)j,k,l)r + (Ej+1/2,k,1 - §j—1/2,k,l)
+ (ﬁi,k+1/2,l - fj,k—1/2,l) (24)

+ (éj,k,l+l/2 - 5,',;;,1-1/2) =S ,
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where £, 7, andG are the numerical fluxes representing the physical fluxes €, F,and G at
the bounding sides of the cell for which discrete conservation is considered, and Qj k1 is
the cell average of the dependent variables. The half-integer subscripts denote cell sides
and the integer subscripts the cell itself or its centroid.

The semidiscrete conservation law form given by Eq. (24) may be regarded as rep-
resenting a finite volume discretization because the Jacobian J appearing in Eq. (23) is

associated with the volume of the cell, and the metrics 5_}, %—, and so on appearing in the
flux terms (Eq. (22)) are nothing but the components of the appropriate cell surface area.

The objective is to solve Eq. (24) for the dependent vector Q. After incorporation of
proper flux representation, the discrete form of Eq. (24) can be written as: :

R(Q)=0 . (25)

If Q is sought in the neighborhood of a known solution @*, then solution to Eq. (25) can
be written as:

OR “ .
EE(Q - Q") =—-R(Q ) (25a)

where %, in general, is a differential operator. All of the above-mentioned algorithmic

issues apply to how one models the 2R ,perator. References 1-29 provide many of the

0Q
algorithmic details.

Unstructured Grid Approach ~i

In the unstructured grid approach, there is no defined set of coordinates, such as the
€, 1,  system in the differential approach. The cell shape is arbitrary and can be made up
of any polyhedron shape such as a hexahedron, prism, or a tetrahedron. The coordinate
directions for each cell are defined by its cell interface normals, and one will employ the
integral conservation form of equations, Eq. (19), to enforce the flux conservation.

We first divide the surface integral into component parts that apply over each distinct
face or side of any cell under consideration. We then replace the integral on each face with
a numerical quadrature as part of the numerical approximation procedure.

//;(f-ﬁ)d5=f§: //F(F-ﬁ)ds
ces (26a)

= Z Z f,--ﬁ,-S,-

faces quads.

Here, “quads.” is an abbreviation for “quadrature points.” The weights of the quadrature
formulae must include the effect of cell surface area corresponding to the given face and
such weights are denoted by S; in the above equation. The midpoint formula can be

represented as
//(ﬁfl)dS: Zﬁmﬁmsm (26b)
S

faces
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where m denotes the centroid of each face. Even higher-order quadrature formulae may
be used if necessary.

The original initial value problem (IVP) for the differential form of the conservation
laws specifies initial values of the dependent variables. In the IVP for the integral form
of the conservation laws, initial values of cell averages of the dependent variables will
be defined. Given such initial values, the three steps used to set up the discretization
procedure for the integral form of the conservation laws are as follows.

(i) Define dependent variable polynomials in

each cell so that the cell average of the polynomial approximation matches the cell

average of the dependent variable which is either given as part of the initial value

specification or obtained by updating the cell averages during subsequent steps of the
solution process. This process of defining pointwise polynomial behavior from known
values of cell averages is called the “reconstruction procedure”. At quadrature points
on boundary faces and at other locations, it may also be required to construct the
polynomials by fitting them to known pointwise values in addition to cell average
values of the dependent variables.

(ii) Evaluate the polynomials at all quadrature points.

This will lead to “left” and “right” values at each quadrature point which lies on a

face common to two cells.

(iii) Construct the solution of a local Riemann problem using these left and right states
and from this evaluate the numerical flux. Use such numerical fluxes in Eq. 26a or

Eq. 26b.

(iv) Steps (i)-(iii) complete the discretization of the right hand side of Eq. 19. To the
resulting semi-discrete system of equations, we apply a suitable time-integration pro-
cedure.

Features of Structured Grid—-Based CEM

e Maxwell’s equations in differential conservation form

Explicit Lax-Wendroff upwind finite-volume scheme
e Multizone structured gridding

e Convenient bookkeeping/data structure

Efficiently vectorizable

Disadvantages

e Multizone gridding process is tedious and time consuming
e Zonal interface boundary conditions degrade execution efficiency

e Difficult to grid certain interior regions

14




Features of Unstructured Gﬁd—Based CEM
o Mas?well’s equations in integral conservation form
e Any region can be gridded
e Higher—order basis functions for solution variables in each cell

e Well suited for MIMD architectures

o Can handle special regions (thin wire, crack, - - -) through choice of basis functions

Disadvantages

o Accuracy may be an issue for arbitrarily arranged unstructured cells

¢ Vectorization may be difficult

Unstructured Grid-Based CEM Issues

o Geometry/unstructured grid generation
— surface definition
— surface grid
— volume grid

¢ Integral equation based finite-volume scheme
— basis function in each cell -
— flux evaluation at interface
— time discretization

e Graphics/visualization

In the development of an unstructured grid-based CEM method, the present work
addresses some of these issues.
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4.0 CONSERVATION FORM FOR MAXWELL’S EQUATIONS

We can regard equations (1) and (2) as a first-order system. of partial differential
equations for the time development of the dependent variables B and D:

9 (B VxE\_/( 0O '

5(5)*(_%@ =\-7) - (@7)
At any instant the functions E, H , and J can be derived from the current values of D and
B, and by substitution into Eq. (27) they determine new values for the time derivatives.

In order to apply CFD-based conservation-law form finite-volume methods, Eq. (27)
is rewritten in the form of Eq. (15), where: '

( B; ) ( 0 ) ( Dz/e ) r_Dy/e\ (0 )
B, -D,/e 0 D, /e 0
_]B: . g_) Dyfe \ . p_J-Dzfel _]| O s=1 0
e=3p.(¢=y o >,J-'—<_Bz/”>,9—< B, /u S =9 5 ¢
Dy B./p 0 —B:/p —Jy
\Dz/ x'—By/ﬂJ \ B;/[J J -\ 0 J k'—JzJ

(28)

If we define unit vectors Z, ¢, Z along three orthogonal coordinate directions in space,
equation (28) can be written in a compact form as:

0 (B, 0 ( ixE 3vyxE 8 ( :xE 0
6t<5>+0z<—£xﬁ)+_6_y< ny)”Lb?(—sz) (—J) » (29)

in which every one of the six component equations is analogous to the conservation law
Op/8t + V - J = 0 which holds for electric charge. In a formal sense, one can consider the

set of six unknowns (E,Ij) as a “vector” density @, and define a “tensor” flux F' with
components:

”xE T E "xE
r=(25) L R=(D5)  R=(25E) @

such that equation (29) becomes:
0Q/at+v-F=(_?j)és . (31)

This rather abstract representation as a “system of conservation laws” provides a
convenient starting point for the development of integration algorithms.

Also, one can transform the equations to arbitrary curvilinear coordinates (¢,7,()
without alteration to this basic form:

5 (3)a (8in) w (5ih) % (854)-5 - @
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where J is the Jacobian of the coordinate transformation and, for example,
£ = (3¢ 0z, 06y, 0¢/02). |

In addition to the differential form, one can use the divergence theorem on any volume
V to obtain the integral form of Maxwelll’s equations:

TN CAT I

where the six components of F -7 in Eq. (19) are (4 x E,—f x H).

Equation (33) replaces all the spatial derivatives with area integrals over the surface
of V.

4.1 Interface Flux Forms

In order to evaluate the fluxes £, F, and G required by a finite-volume procedure,
Eq. (24), at appropriate cell boundaries, first the characteristics of Eq. (32) are analyzed
in each (1,£), (r,1), and (,¢) plane. For example, the characteristics (eigenvalues) in the
(7,&) plane are given by solving the matrix equation |4 — AI| = 0, where A = 9€/0Q is
the Jacobian matrix.

For a locally isotropic medium, D=¢Eand B = ,uff , the matrix A has six eigenvalues:

-

two vanishing (A1,2 = 0), two equal to.c|¢], and two equal to —c|€|, where ¢ = 1/,/p€ and
‘ €] = /e + £2 + 2. Referring to Fig. 4.1.1, the negative and positive eigenvalues are

indicated at a cell boundary (interface). The intent is to compute the interface flux given
the left state — and the right state +  on either side of the interface. For a linear
system, across a characteristic A, the variation in Q and & are related by a jump condition
—\Q|+]€| =0, where | | denotes jump. To make the treatment more general, a resistive
sheet is introduced at a cell boundary (Fig. 4.1.1) whose resistivity is denoted by (1/0d)
where o is the conductivity and d is the thickness of the sheet. The resistive sheet can

allow for total tangential magnetic fields (5 x H ) to jump across the sheet. Corresponding

to the £—direction interface, the following jump relationships are writtenl4.

Across — Characteristics (}\ = —c]é‘l , E: E/IgI)
(B*— B~)=—£ x (E*—E") (34a)

Across + Characteristics

(B+ — B*) = & x (E+ - E*) (34b)

At the Interface (A = 0) (Allowing for a Resistive Card)

Ex(E*™—E*)=0 | (34c)
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__E x (H** — H*) = —ad (E x € x E) | | (34d)

Relationship Eq. (34d) is obtained by integrating Eq. (32) over an infinitesimal strip area
enclosed by a contour containing the resistive sheet. Solving the above four relationships,
one can write the expressions for the interface fluxes:

{[B*(cc)* + Ex HY] + () B~ x ]}
(ec)= + (ec)t +od
{[1+ od(ue*) (B (u)~ +Ex E) + [(ue B — Ex E]} (35)
(pe)t + (pe)~ + od(pe)*(pe)~
{[1 + a’d(uc)_] ((,uc)'*'H"'” — Ex E+) + [(pc)"H" +Ex E"]}
(e)* + (pe)~ + od(ue)=(pe)*

The superscripts + and — denote the right and left state at a cell interface. When od = 0,
the total tangential electric and magnetic fields are continuous across a material interface.
When od — oo, the resistive sheet represents a perfectly conducting surface, and the
total tangential electrlc field { x E* goes to zero satisfying Maxwell’s boundary conditions
for a perfectly conducting surface (to be discussed later). The corresponding tangential

magnetic fields (E x H *) depend only on E~ and H~, and similarly (E x H **) depends

ExE*=Ex

ExH*:Ex

ExH":Ex

only on E* and H*. Equation (35) allows for the matenal properties (€, ) to jump any
amount at an interface. In free space “where ¢, ¢, pt, =, €, and €~ are normalized to
unity, Eq. (35) reduces to a simpler form.

Given a left (—) state and a right (4) state, the process of computing the intermediate
states (* and **) is usually referred to as the “Riemann” problem.

Additional information on these interface flux forms, and on the
eigenvalue/eigenvector structure of the Maxwell equations is given in Section 4.

4.2 Characteristics of Maxwell’s Equations

The characteristics of Eq. (21) are analyzed by considering the Jacobians

gg, gg , and ——9— For example, the Jacobian matrix -g—g for Maxwell’s equations, Eq. (32),
becomes:
r 0 0 0 0 =&/p &/
e 0 0 0 52/7 0/ p
_ot _| 0 0 0 —&/p &/ O
4507 0 &l gl 0 00 o
—€. /€ 0 €z/€ 0 0 0
L €y /e  —&ife 0 0 0 0

which can be symbolically written as:

96 _( 0 —(f/n)x
50 ((s/e)x 0 ) ’ (37)
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RESISTIVE CARD

Ex(E**-E" =0
fx(H**—H®) =(odIE*

Fig. 4.1.1. Interface Flux Treatment with a Resistive Sheet.

g 0 fz/ﬂ' _ﬁy/#
(‘) x= | —&/p 0 §z/p . (38)
Ey/u —&/n O

where:

The eigenvalues of the Jacobian Mmatrix A in Eq. (36) are obtained from solving:
IA;AI|=O . (39)
and the right eigenvector corresponding to a kth eigenvalue, A, is obtained by solving:
|A—MI|{rx} =0 . (40)

For Maxwell’s equations. solution to Eq. (39) reuslts in six eigenvalues: two vanishing,
two equal to ¢|f], and two equal to —c||, where ¢ = 1/,/p€, £ = (£2,6y,€:), and €] =

Jerere

Defining the upper and lower halves of the eigenvector 7 as € and h, respectively, so
that 7 = (&, h)7, one finds corresponding to the zero eigenvalues:

an(t) (D)

where E = £/|€]. Corresponding to the positive or negative eigenvalues, one finds that
& h, and £ form a mutually orthogonal system with h o= ﬂ:(g x €/ec), and where the
upper sign goes with the negative eigenvalue. For example, corresponding to the two
negative eigenvalues one can construct the two independent set of eigenvectors by choosing
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-

€ = (zy,Yn,2y), a tangent vector in the direction 7 on a constant—{ plane for one, and
€ = (¢, Y¢, 2¢), a tangent vector in the direction ¢ for the other. Once € is chosen k can
be obtained using the mutually orthogonal property h= ({ X €fec).

For hyperbolic systems of equations, the Jacobian has real eigenvalues and a linearly
independent set of eigenvectors!#31, The equations are also characterized as “linear” if:

Vorp-re=0 = (42)

and “nonlinear” if:

Voli-me £0 . (43)

It can be verified that time-domain Maxwell’s equations are hyperbolic and linear. For a
linear, hyperbolic equation of the form

¢+ fr=0 | (44)
one can write the jump condition!*

—Alg)+[fl=0 (45)
where [q] and [f] are the changes across an eigenvalue A. This jump condition is used in

deriving the interface flux forms in Section 3.2.

For a nonlinear system, the jump condltlon is defined only across a surface of discon-
tinuity S(z,t) = 0, such that:
Silgl + S:[f]1=0 (46)

where (5;/S;) = —(dz/dt) = A is the characteristic speed of the discontinuity. For a linear
system A is replaced by ), the eigenvalue.

4.3 The Riemann Solver: Preliminaries

The wave solutions of Maxwell’s equations can be derived in a different way by looking
for characteristic combinations of E with H (or D with B) that propagate without change
along a particular direction in space. The form of these combinations can be illustrated
using one space dimension (say, z), in which case Maxwell’s equations reduce to:

0B, OFE 0D, OH,
+

bt |
ot Oz S R

=0 . (47)

In free space, Ey, = Dy/e; and H, = B./po, so the two equations can be rewritten in

matrix form as: 5 5 .
Bz il Oa 60— Bt —_
at(%)*@z <u51,0)<Dy)“° ’ (482)

N
5@+ 5-4Q =0, where Q = (B:, D) . (48b)

or:

20




By direct substitution into (47), it is easy to show that:

4 o )_ .0 (1o

5 (B= —y/ "D) =% (Bz - \/;D") e
0 Ho _ 0 Ho
3t (Bz + A / ?O—Dy) = —6'5; (Bz + ?O'Dy> ) (49b)

where ¢ = 1/,/po€o is the velocity of light in vacuum.

These are just two scalar, first~order equations having the general solutions:

Bz+1/?-Dy =g(z—ct) , (50a)
0

B, —, /’;ﬂDy = go(z +ct) , (500)
0

the first representing a wave traveling toward increasing values of z and the second, a wave

traveling in the opposite direction. The quantity (o 2 v/ Ito/ €0 is known as the free-space
impedance.

From (50) the most general solution of the one-dimensional Maxwell’s equations can

be written as:
B: = gi(z — ct) + g2(z + ct) (51a)

D, = [gi(z= ct) — gaz + ct)] /Co - (51b)

So, whatever initial distribution of B and D we are given at t = 0, we can decompose it
uniquely into a right-moving and a left-moving wave, each of which travels at the velocity
of light. In the (z,t) plane, the right-moving combination ¢; = B + (oD is seen to be
constant along the characteristic lines z — ¢t = const., while g = B — (oD is constant
along the lines z + ¢t = const. Thus, the value of B at any point in the upper (z,t) plane
can be constructed as shown in the figure from the initial values of B and D at zo = z —ct
and z; =z + ct.

ty

Fig. 4.2.1 Right and left moving characteristics.
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Another way to view the characteristic combinations g = B+ (oD and g = B ~(,D
is as defining eigenvectors of the 2 x 2 matrix A in equation (48):

(B,D) = (1,+(; 1)K for right moving waves (52a)

(B, D) = (1,—(; 1)K for left moving waves (520)
(uao‘l 6%1) (+<10“) B (11//CZZ°) - e (—10-1) (53a)
(2 D) ()= () () - o

This reveals a fundamental connection between the abstract representation as a system of
conservation laws and the propagation characteristics of the original problem: the eigenvec-
tors of the abstract system (known as the Riemann invariants) provide a way to decompose
the initial data that allows us to construct the solution at all later times.

For a linear hyperbolic equation of the form ¢; + f = 0, one can diagonalize the
Jacobian matrix 4 = %5 such that A = R[A]L, where L is the left eigenvector matrix,
R is the right eigenvector matrix, and [}] is the diagonal matrix made up of eigenvalues.
Multiplying throughout by L, one can write the equation (Lg): + [A](Lg), = 0, where now
the combination (Lg) is the Riemann invariant.

-

4.4 Discretization and Dissipation

The true initial-value problem we must solve numerically is to determine the behavior
of the electromagnetic fields on a discrete mesh, from data originally prescribed on this
same mesh. In one dimension, the fields B(z,t) and D(z,t) are represented by values
b;(t) and d;(t) attributed to each interval of the space coordinate z that lies within the
computational domain (say, 0 < z < L). In our finite-volume approach, these values can
be thought of either as approximating the true values of B and D at the center of each
interval at a given time, or as the averages of B and D over the interval. More generally,
B may be evaluated on a different spatial mesh from D, or the behavior of B and D within
each interval may be modeled by high—order polynomials.

In any case, one cannot directly solve the partial differential equations for B and D,
but instead must seek a discrete set of equations for {b;} and {d;} whose solution for any
later time approaches that of the original Maxwell’s equations as the mesh is refined. This
is the basic concern of all numerical integration techniques. In what follows, we describe
a particular approach to this problem that uses the Riemann invariants to achleve both
accuracy and stability in the integration process. '

This method was developed primarily by S. Osher®! and various co-workers, includ-
ing Sukumar Chakravarthy of the Rockwell Science Center. They considered the general

hyperbolic system:
ow 0

E‘*‘a_xf(w)zo ’ (54)
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where w(z,t) is a vector of unknown fields and the flux f(w) is a vector-valued function
whose Jacobian matrix 8f/0w has only real eigenvalues.

Discretizing the space variable in this equation forces one to replace the spatial deriva-
tive with an approximation based on finite differences. The order of this approximation,
in the sense of Taylor series expansion, is then found to determine the order of accuracy
of the computed fields. Furthermore, the details of this approximation place limits on
the stability of any scheme chosen to integrate (54) forward in time. In particular, we do
not want the ragged form of the discretized initial data w;(0) to give rise to increasing
raggedness in the solution w;(t) at later times.

What Osher did, in essence, was to rewrite (54) in terms of its Riemann invariant
combinations, and determine for each invariant an appropriate discretized flux. Just as in
our 1D Maxwell example, this flux carries information only from the past locations of the
wave to the present, and it is therefore called an “upwind” approximation.

The first step in Osher’s procedure is to find the eigenvectors ri of 0f /0w, together
with their associated eigenvalues A\x. As we have seen in the example, these eigenvectors are
the combinations of the components of w that propagate locally as simple waves gi(z—Axt):

{g—l{)] Ty = AkTk - (55)

For the special case of a linear dependence of f on w, we note that the matrix 0f/0w is
constant, and the eigenvectors and eigenvalues are independent of w.

The second step is to construct a two—point approximation hi(wj,wjt1) for the flux
entering the jth cell from the interface between cells j and j + 1. Osher does this by
finding a value wj,, that is consistent with data propagated from the interior of both
neighboring cells and putting:

hi(wj, wjtr) = f(w;+1/2) : (56)

A similar construction at the (j — 1,7) interface yields a value w}*, consistent with data
in cells j — 1 and j and an approximation:

ho(wj-1,w;) = f(wily;) (57)

for the flux entering the jth cell from the j — 1/2 interface. These approximations can be
used directly to obtain a first—order accurate approximation to (54):

dw; 1 "
D+ < [fwrg) - Fw5 )] =0 (58)

More importantly, the first—order fluxes form the basis for constructing integration schemes
of higher order, such as the Lax-Wendroff procedure used in this report.

How, then, are these interface values of w constructed from the Riemann invariants?
In Osher’s method an integration is performed in the abstract space of the possible values of
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w, starting (in the first case) from w; and ending at w;41, and following a path determined
by those eigenvectors that represent waves propagating towa.rd from the interface from
either side. The first leg of this integration puts:

=7 (w(sl)) ) (59)

where r; is the eigenvector that corresponds to the wave traveling at the greatest speed
(é A1 < 0) away from the interface from the interior of the jth cell. The first leg ends at

a point wj,; which we have to leave undetermined until the path finally reaches w J+1 The

second leg puts:
dw
ds; 2 (w(s2)) (60)

and so forth, until all the waves propagating from j + 1/2 to j have been used. The (as
yet undetermlned) value of w at this end point is w?* +1/2° Now the waves for which A =0
are used in the same fashion, i.e., one integrates

dw
dsk

ri (w(sk)) (61)

along each such eigenvector. The end point of this series of integrations will be w? it1/2-

The last series of legs involve the Waves that propagate toward the interior of cell j + 1
from the j + 1/2 interface, done in the order from smallest speed to largest. Finally, on

the last leg one has:
dw

dsm

=rm(w(sm)) (62)

and the final end point is wj4;.

The m known components of w; and wj4; provide just enough information to deter-

mine the m scalar quantities {s;} and therefore the interface values w? 4172 and wii, /2"

As an important illustration of this procedure, consider the one—dimensional Maxwell’s
equations that describe an inhomogeneous medium, that is, a medium in which € and p

are functions of z: 5 5 1
B 0,e” B\ _
7 (5) 5 (#50) (3) =0 0

If we take w to be simply (B, D) then this equation is not in the form of (54) because the
flux depends explicitly on z through € and u. To get around this difficulty, we define ¢!

and p~! as additional dependent variables e and m, and write:
B eD
0| D 0 | mB
| e + 32 0 =0 . (64)
m 0
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Then the Jacobian matrix becomes:
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(65)

(66)

(67)

(68)

(69)

(70)

(71)

(72)

(74)

(75)

(76)

0 e DO
of (m 0 0 B
dw {0 0 0 O ’
0 0 0 O
- which has two zero eigenvalues A, = A3 = 0, one positive eigenvalue Ay = ¢ = em and one
negative, A\; = —c. The corresponding eigenvectors are:
c 0 B e
| ™ = D e = 0 I
1= 0 b] 2= —e H 3 = 0 ) 4 = 0
0 0 —-m 0
Along the first leg of integration, we now have:
glg_c ~dD _ o de,_o_dm
ds ' ds *ds  ds
trig—Bi=cs ;i Diyyp—Dj=-ms e; —ej=0=mj—m;
* c x
j+1/2 — Bg;= ";( +1/2 7 Dj)
Along the second leg:
dB dD de dm
ik R Pt B A S A
D 2 €52
B, = B} c In—2-=s=—-In-2 ; mj2=m;
j j+1/2 D112 y 3 j
ej2Dj2 = ejD;+1/2 - ;-:1/2 = E;+1/2
Along the third leg:
dB dD de dm
ds " ds " ds 0 ds m
B .13 m 'v3 A * %
ln—B;—2=s=——1n-T-ri; :  Bjs =Bl
mj,3B;-T-1/2 = ij;+l/2 - ;—:1/2 = ;+1/2
and along the final leg:
dB dD de dm
—d-s—=e ; I:c ; E;=0=71-:S— ) Cj+1—ej,3=0=m.i+1"mj,3




L € - L 3] -
(BJ'+1 - j+1/2) =2 (Dj+1 - Dj+1/2) . (77)
Putting these relations together, one finds finally:

[¢;B; + €iD;] + [ci+1Bj+1 = ej+1Dj1]

j+1/2 = MjB412 = (cj/mj) + (cir1/mj41) (78a)
[chj + ijj] + [Cj+1Dj+1 - mi+lBJ'+1]
j+1/2 €j Jj+1/2 (CJ/CJ) + (Cj+1/6j+1) ( )

We thus have found that the appropriate fluxes involve a weighted average of the Riemann
invariants on either side of the interface. The electric terms that now appear in H*, and
the magnetic terms in E*, when these expressions are substituted into (58), result in a
diffusion-like second difference term that acts to damp the integration process. These terms
in fact provide the necessary stability that is missing from the simple central difference
approximation.

The generalization of this approach to three dimensions is straightforward: The flux
contribution along each of the three coordinate directions is computed independently, and
then all three flux terms are added to give Gw/0t in first order. Along the ¢ direction, the
fluxes are:

[c‘ﬁ“ ~Ex H) + [¢t Dt + € x H)
- (c€) + (ce)*
[c"B~ +€x E7] + [¢*Bt — £ x E*]
(ue)™ + (pe)t
which are the same as the fluxes given by equation (35) when there is no resistive sheet at
the cell interface.

Ex E*=§x (79a)

Ex H* =€ x (79b)
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5.0 UNSTRUCTURED FINITE-VOLUME TREATMENT

5.1 Space/Time Discretization

The major feature of our discretization approach that distinguishes it from other
finite-volume and finite-difference procedures is that the electric and magnetic field un-
knowns are co-located in both space and time, rather than being assigned to two inter-
penetrating spatial grids and separated a half-step in time. These field unknowns are the
volume averages of E and H within each cell in the space-filling grid.

Staggered—grid methods automatically achieve second-order accuracy in space, while
co-located field algorithms require near-neighbor corrections. However, there is a funda-
mental equivalence between these methods in terms of the achievable accuracy and stability

of the integration process.

Both approaches typically use explicit time integration, which means that the upper
limit on the allowable size of the time step At is determined by the physical size and shape
of the smallest cells, corresponding roughly to the time that light takes to cross one of
these cells. Implicit integration schemes can choose larger time steps, but they require the
inversion of a banded matrix the size of the whole grid, and their ability to preserve phase
information is not known.

The unstructured algorithm we have developed is applicable to any grid that fills
the computational domain with polyhedral cells. In particular, we have implemented the
necessary bookkeeping procedures tS deal with hexahedra (such as cubes), tetrahedra,
and prisms (translations of a triangle out of its plane of definition). A generalization to
curved interfaces is straightforward, but not regarded as useful at this time. These three
polyhedral geometries allow us to specialize the code in various ways, for instance to check
against the structured—grid Lax-Wendroft algorithm in our present solver RCS3D, or to
run purely two—dimensional cases.

Each polyhedron in the computational domain is specified by the location (z,y, z) of
its vertices in physical space. From these locations, all the necessary geometrical quantities,
including areas, surface normals, and centroidal locations are computed. As stated earlier,
each field unknown attributed to a given polyhedron is considered to be an average of the
field over the volume of the polyhedron. The six components of E and H at one time level
are thus stored according to an index a that runs over all polyhedra. Quantities related
to the polyhedral faces, such as face normals, are stored according to another index that
runs over all faces.

The interior faces of a given polyhedron are kept distinct from those of the neighboring
polyhedra that share faces with it in a purely geometrical sense. This allows, for instance,
for any type of impedance boundary condition to be applied at the boundary between
cells. Thus, each polyhedral face has a co—face with a distinct face index, and each such
co—face belongs to its own polyhedron.

27




5.2 Polynomial Representation and Least Squares

To go beyond representation of the fields as simple volume averages, we have chosen
initially to implement linear polynomial functions for both F and H. Higher order poly-
nomial representations will follow the same general procedures. The essential question is
how the higher order terms in these polynomials are to be determined from near-neighbor
data, so as to achieve the desired level of accuracy within each cell. In our unstructured
approach, this evaluation is closely tied to the time integration procedure through the Rie-
mann fluxes at each'interface. Ultimately, this preserves time accuracy as well as accuracy
in space.

In the first step of this method, first-order Riemann fluxes are constructed at each
interface of a cell from the volume-averaged fields on either side of the interface. For
Maxwell’s equations, these fluxes are the tangential field components just inside the bound-
aries of the cell. To complete the specification at the cell surface, the normal components
of E and H are taken to be the normal components of the volume-averaged fields. This
maintains overall charge conservation within the cell.

These boundary data are sufficient to determine all the terms in a linear polynomial
fit to either E or H by a procedure such as least-squares minimization of the fitting error
integrated over the boundary If we denote the vector polynomial to be fitted as A and its
boundary values as A*, then the quantity to be minimized is

e:l - @—ffﬁ. (80)

cell boundary)

Taking derivatives of e with respect to each polynomial coefficient in A results in a non-
singular set of linear equations for these coefficients. For consistency, one constrains the
constant term in A to be equal to the known volume average of A over the cell.

A separate set of equations is obtained for each Cartesian component of A. If one
writes, e.g.,

- 04, 0A; 04,

A (T) = (Ax)a+($_za)“a’;"*‘(y_ya)Ty‘Jf'(z_ — (81)
where the angular brackets denote volume averaging and e.g., z, = (z)q, then these
equations become

OA, z 0A:
(z —z4) [(m - :z:o,) £ + (y ya) + (z - za) . ] ds
b - (82a)
= [ (o= 2a) (42 - (Ac)alds
da
0A; 0A; 0A;
/ (¥ — Ya) [(m_ma) Oz + (y_ya)73'_+ (Z—za) 5z } dS
S ) < (82b)

- /a =)z - (4] dS
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0A. OA:
B Aa(z—za) [(x-xa)—gx—+(y—ya)-—a-5—+(z-za) 5 ds

- /a (- )[4 = (42)a]S

where we have denoted the cell boundary as 8a. These equations can be solved by inverting
. the matrix M whose elements are the quadratic moments

) (82¢)

M,-,-:/ P ()] (F=Fa)dS (83)
da

where 7 and 7 are unit vectors in the respective coordinate directions.

For a linear polynomial fit, there is a simpler alternative procedure that we have
implemented to evaluate these linear terms. From the divergence theorem, the average
value of any derivative over the cell volume can be rewritten as a surface integral:

1 Op 1 .
V:La?anv; aan,;pdS , (84)

where # is the unit outward normal on the boundary da and V, is the cell volume. In
particular, if p is a linear function of 7 then 0p/dz is constant and equal to this volume
average, which can be calculated just from the values of p on the boundary. For every
component of A, we can replace its boundary values by the corresponding component of
A* to obtain the approximation

$i,~— [ addSE K. | (85)

a Jia

which is equivalent to using 7 as the weight in the method of weighted residuals applied to
the difference A — A*. The quantity K, is a vector dyadic. Since we have chosen - A* =
A - (A)q, we can make use of the vector identity @ = 72 (72 - @) — 7 X (A x @) to rewrite the
integral as

1

Ko= o
VO’ da

i fax {7 x ((A)a— )} d5 (86)

which will be more convenient to compute in terms of the tangential components of A*.
This particular weighting can be shown to result from a variational principal that assumes
each Cartesian component of A* is the boundary value of a solution of Laplace’s equation

inside the cell.

5.3 The Unstructured Second—Order Algorithm

An algorithm that maintains second-order accuracy in both space and time can be
constructed from the linear polynomial representation as follows:

@2 = Q) - 2= [ A F(@m)ds (87)
a Jia
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KPr=— | aQ™™dS=— [ a(rx{ax[(Q™-qQ™]})dS 88
- i Jo 9 7 ) AR {Ax (@) 11 (88)
QU2 (7) = (QYH1/2 4 (F—7,) - K™ for ¥in cell @ (89)
@z =@ -5 [ a-F(@mm)as . (90)
fa
Here we have written Maxwell’s equations symbolically as

8 L

X v-r@Q=0, ¢=(5.5) , (91)

and the solution of the Riemann problem just inside a cell interface is denoted @Q*. This
solution depends only on the values of @ (7) immediately on either side of the interface.
These are the cell-average values for Q*™ and the linear polynomial values for Q*(m+1/2),
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6. UNSTRUCTURED GRIDDING AND RESULTS

There are three steps involved-in the unstructured grid setup. 1) Geometry modeling,
2) surface grid setup, and 3) volume grid setup. Appendix A3, sections of a contract
report on geometry and gridding prepared by the Computational Fluid Dynamics group
at Rockwell Science Center, include a detailed writeup on the unstructured grid generation
process using a procedure called the “advancing front method.” Once the unstructured
grid is set up (hedahedron, prism, or tetrahedron), a preprocessor is used to define all the
quantities required by the unstructured grid-based Maxwewll’s solver. Some of them are,

1. Cell volumes and cell face normals,

2. Face/coface connection (from this information one constructs the face and node near
neighbor connection), and

3. Boundary face numbers (both body and outer boundary).
This grid related information is used in the flux summation process.

Problems in CEM involve arbitrarily shaped three-dimensional geometries that need
to be represented properly in the computer simulation. In addition to the external shape,
CEM also requires modeling the interior of the penetrable structure. Depending on the
formulation (differential or integral), one may choose either a structured grid or an un-
structured grid setup.

Two gridding issues that need to be addressed in EM computations are: 1) num-
ber of grid points per wavelength to properly represent the fields in and around a scat-
terer; and 2) how far should the outer boundary be placed from the scattering object
to adequately simulate the nonreflecting boundary condition. In general, the number of
points/wavelength is not determined by wavelength alone, and involves the body dimen-
sions (characteristic body size with respect to wavelength) also. The outer boundary
location, theoretically, can be right on the body surface itself; however, the computational
implementation of nonreflecting boundary conditions requires the outer boundary at a few
(2 to 5) wavelengths away from the surface. Again, if one can construct higher order ac-
curate implementations of nonreflecting boundary conditions, the outer boundary can be
brought very close to the scattering surface. In general, the necessary grid resolution is
provided only around and near the body surface. Between the body and the outer bound-
ary, the mesh is allowed to stretch resulting in very crude (3 to 5 points per wavelength)
meshes near the outer boundary regions.

The free space wavelength is reduced to smaller values inside a material (as € and p
become large, the speed of propagation, ¢ = —\/16—7, goes down, causing the wavelength to

scale accordingly). Thus, the grid resolution must take into account material properties
to adequately resolve the fields inside material zones.

The number of grid points per wavelength required depends on the order of accuracy
of the numerical scheme. A second—order accurate scheme usually requires at least ten grid
points per local wavelength. One may be able to use a higher order scheme and minimize
the number of grid points. However, as the order of accuracy goes up, the scheme will also
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require more computations per grid point, which may offset the execution savings with
fewer grid points.

The requirement that the fields are resolved é,ccurately with proper grid resolution

makes CEM problems computationally intensive, requiring large scale supercomputing.
For example, to compute the radar cross section of a typical aircraft at 1 GH z, even if one
used 10 grid cells per wavelength, it will require tens of millions of grid points.

1

2)

3)

4)
5)

6)

Some of the salient features of the current CEM capabilities are
Time-domain Maxwell’s equations
Proven algorithms from CFD

Single pulse (multiple frequency, transient) or continuous incident wave (single fre-
quency, time harmonic steady state)

Numerical grid generation — structured multizone grid or unstructured grid
Complex geometry with layered radar absorbing media

Lossy or lossless material properties
Frequency and time dependent properties
Thin structures (resistive card, lossy paint)

Vector/parallel code architecture — 2 GFLOPS demonstrated on the Cray-YMP
with 8 processors, and 10 GFLOPS on the Cray-C90 with 16 processors. Scalable
performance demonstrated on both the nCUBE and the Intel Paragon.

Received the 1990 CRAY Gigaflop Performance Award
Received the 1993 Computerworld Smithsonian Award
Pre- and post-processor graphics/animation

Application to scattering (RCS), radiation (antenna), EMP/EMI/EMC, and bioelec-
tromagnetics problems

Ideal for CFD/CEM optimization studies.
The CEM code has been extensively tested for the following geometries.

Canonical objects such as spheres, cylinders, ogives, thin rods, cones, airfoils, and a
circular disc

Almond shaped target

Inlets of various shapes (square, circular, curved, - - -) including the presence of infinite
ground plane

Flat plates of various planforms
Double sphere

Complete wing geometries with layers
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7) Finned projectile and cone—cylinder combinations
8) Scattering from ship-like targets
9) Complete fighter targets

Some sample results are shown here to illustrate the present capability. Figure 6.1
shows an unstructured grid set up for an almond. Figure 6.2 shows an unstructured grid-
based CEM computation for a complete fighter. Figure 6.3 shows a bioelectromagnetic
computation involving the aborption of microwave radiation by a human used in the hy-
perthermia treatment of cancer. Figure 6.4 shows results for a monopole antenna. Figure
6.5 shows results for a two— dimensional photonic band gap structure used as a filtering
device. Currently, this CEM technology is being applied to study the interference of pylon
mountings in the field test RCS measurements of low observable platforms of interest to

RATSCAT shown in Figure 6.6.
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Figure 6.1 Unstructured gridding for an almond
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VFY-218 fighter
at 100 MHz

Figure 6.2 Unstructured grid-based CEM for a complete fighter

35

surface electric fields

i




Bio-Electromagnetics
Simulation

D o=

}

5§53

250

2y - A
OLE 'E';*.fr"fi"f"?”‘i"”:;
=65 M
%= 8 ,i-ﬂlll}
w 8~

Figure 6.3 Bioelectromagnetics application of CEM
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Figure 6.4 Simulation of monopole antenna radiation
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7.0 MASSIVELY PARALLEL COMPUTING

Parallel Implementation

With the emergence of massively parallel computing architectures with potential for
teraflops performance, any code development activity must effectively utilize the computer
architecture in achieving the proper load balance with minimum internodal data commu-
nication.

The structured finite-volume code was originally developed and optimized for vector
computer architectures. The implementation of the code on a distributed memory parallel
architecture was accomplished by re-using much of the original vector code. Additional
coding was added for handling inter-processor communication and other functions unique
to the parallel implementation. :

Parallelization Strategy

For the structured formulation of the finite-volume code the computational domain
surrounding the target geometry is composed of 3-dimensional 6 sided volumes of grid
points called zones or blocks. Each side or face of a zone either connects to another zone or
has a boundary condition defined on that face (perfect conducting surface, outer boundary,
etc.). The parallel algorithm takes advantage of this multi-zonal gridding capability in
order to divide work among processors. The various zones are grouped onto processors,
with each processor obtaining a solution for the cells within its own local set of zones.

Communication Requirements

The solution procedure does notsallow for processors to proceed completely asyn-
chronously. Solving for cells on zone faces that are connected to other zones requires
information from within the adjacent zone. This information may be available locally if
the adjacent zone resides on the same processor, or message passing may be required if
the adjacent zone resides on another processor. This boundary update message passing or
flux transfer message passing is done twice per solution time step and forms the bulk of
the parallel code’s message passing requirements.

Load Balancing

Load balancing is achieved by mapping zones onto processors. Perfect load balancing
requires that each processor have the same number of zones, each containing the same
number of grid points and equal numbers and types of boundary condition cells. Simple
geometries may usually be zoned in such a manner as to obtain perfect load balancing.
For complex geometries perfect load balancing is much more difficult, but adequate load
balancing may usually be obtained by mapping a close to equal number of grid points onto
each processor.

Scalability Results

Validation and timing studies have been performed on a 312-node nCUBE and a
208-node Intel Paragon. Currently the code shows good scalability on evenly balanced
test cases. These cases typically had simple gridding requirements and a straight forward
domain decomposition. The results show that inter-processor communication due to flux
transfer never becomes a dominant time factor even on problems with large numbers of
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grid points run on many processors. The sphere test case illustrated in Figure 7.1 shows
how problem size and number of processors can be increased while solution time remains
level. Perfectly conducting sphere grids were run on 6, 24, ‘and 96 processors of the Intel
Paragon. The number of grid points per processor remained constant at approximately
60,000 resulting in total grid sizes of approximately 0.35, 1.4, and 5.7 million grid points for
the three cases. Since increasing the number of processors results in an increased number
of zonal interfaces, flux message passing requirements increase throughout the system.
Despite this increase in required message passing, communication times did not change
appreciably.

Complex problems such as full scale fighter geometries also show encouraging results.
Figure 7.2 shows timing results and zoning for the VFY?218 fighter gridded for a frequency
of 500MHz with a 10 point per wavelength resolution. A total of 58 zones and 2.2 million
grid points were required. The grid was run on an Intel Paragon using 28, 61, and 128
processors. Preliminary timing data reveals that communication overhead remains at
between 1 and 2.5 percent of the total solve time and that solution speedup occurs as the
problem is distributed over more processors. Speedup may be improved by addressing load
balancing issues arising from complex zoning arrangements.
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8. FURTHER DEVELOPMENT OF THE UNSTRUCTURED-GRID CEM CODE

Based on the preliminary results obtained so far from the unstructured-grid CEM
code, many issues need further study to mature this technology comparable to the struc-
tured grid RCS3D code. Some of them are,

1. The process of constructing a polynomial basis function within each cell for the electric
and magnetic fields requires further study for determining the accuracy. Current
procedure involves the use of Riemann fluxes at cell interfaces and greatly simplifies
the process of evaluating the slope information. For arbitrary cell arrangements this
procedure requires further work, especially at boundary faces.

2. We need to look at higher order basis functions greater than second order accuracy.
There is a computational penalty that goes with the evaluation of higher order poly-
nomials. We need to understand the balance between computational efficiency and
accuracy. '

3. Current procedure does not solve the Maxwell equations at a metal boundary (option
10 type procedure in RCS3D) and updates the electric and magnetic fields only at
cell centroids as a cell averaged value. We need to look at ways to improve the
accuracy, especially for traveling waves, by solving Maxwell’s equations right at metal
boundaries within the unstructured grid approach (option 1 in RCS3D).

4. The current code can have only one type of a cell arrangemnt in the entire computa-
tional domain (hexahedron, prism, or tetrahedron). For geometric flexibility we need
to upgrade the pilot code to include combinations of different cell shapes.

The present algorithm reduces to Lax-Wendroff for hexahedral cell shapes. This
allows one to construct a hybrid structured/unstructured grid solver to exploit the
virtues of both approaches.

Ot

6. RCS3D has many types of boundary conditions such as impedance layers, resistive
cards, and can handle frequency (dispersive) and time dependent (active) material
properties. The unstructured CEM needs further development to include all these
features.

-1

. Pre and post processing for unstructured arrangement needs further work. The FAST
capability developed by NASA Ames Research Center is rather limited and cannot
handle hexahedron, prism, and tetrahedron combinations. Also, it cannot handle
plotting of electric and magnetic fields at cell centroids while the grid is specified at
nodes.

8. The use of tetrahedra can result in small cell volumes (compared to a similar hexa-
hedron). This can cause the time step size to be small (maybe a factor of four less
compared to hexahedra cells). We need to look at pointwise implicit schemes to allow
larger time steps while maintaining stability. '

9. The current “advancing front” grid generator needs further work to include constraints
on minimal allowable cell volumes. In the present approach, arbitrarily small volumes
can result at a distance from the scattering object causing small time steps.




10.

11.

12.

We need further study to understand the grid resolution requirements in the unstruc-
tured tetrahedral arrangements (how many cells per wavelength?).

Unstructured algorithms are inherently not well suited for optimum vectorization
because of indirect addressing. For Cray-like machines (coarse grain vector/parallel),
we need to understand the proper data and code structure to acieve the type of
MFLOP ratings demonstrated by RCS3D. The current version runs about three times
slower than RCS3D. :

The real power of an unstructured grid approach is in using MIMD architectures.
We need to understand how to achieve proper load balancing and choices for do-
main decomposition. This is a crucial research topic for demonstrating large RCS
computations such as a complete fighter at giga Hertz frequencies. '
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Al. Treatment for Impedance Layer

I. INTRODUCTION

The electromagnetic signatures of perfectly conducting objects may be reduced by
coating their surface with a thin layer of lossy dielectric, absorbing material such as paint.
This, together with the shape factor, are the basic tools for developing low observable
structures. In computing the radar cross section (RCS) of these objects, if the brute
force approach is attempted, the problem is often too large to be handled, since effective
coatings usually have high complex permeabilities and permittivities. Therefore, some
form of approximate boundary conditions3® have to be used to replace the dielectric layer
by an impedance surface at the interface between the dielectric and free space.

The impedance boundary condition, however, is a frequency domain concept. In
this appendix, it is shown how this concept can be extended to the time domain and
implemented for the finite-volume time-domain (FVTD) method.

II. FORMULATION

The most basic problem to which the impedance boundary condition can be applied
is that of a plane wave incident upon a material half-space. Provided that the magnitude
of the complex refractive index of material is large, i.e., [N | >> 1 where N = \/pe/poco
with p, €, po, and € being the complex permeabilities and permittivities of the material
half-space and free space, respectively, then the material interface may be replaced by an
impedance surface located at the interface on which the electric and magnetic fields satisfy
the following condition, known as the impedance boundary condition:

Ax(aAxE)=-nuxH (AL.1)

where 7 is the characteristic impedance of the material medium and 72 1s a unit vector
normal to the interface in the free space. This impedance boundary condition remains valid
when the interface is a curved surface provided the additional constraint |Im(V)|kop >> 1
is imposed. p is the minimum radius of the curvature.

This basic concept may be simply extended to a multilayered medium. Only the
simple case of a lossy material coating over a conducting body will be discussed here.
From a simple transmission line analogy, the coated object may be replaced by a surface
whose impedance is given by:

n = —iZ tan (kod\/i€) (A1.2)

where Z is the characteristic impedance of the material coating, d is its thickness, ko is the
propagation constant in free space, and a time dependence exp(—iwt) has been assumed.

In the framework of the FVTD method, Maxwell’s equations in the partial differential
form in a body-fitted coordinate system are numerically integrated in the time and over
the faces of each grid cell to compute the field values inside that cell, as explained in the
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previous sections. When one or more of the faces of a cell are impedance surfaces, then
a special treatment is necessary. The tangential components of the electric and magnetic
fields of €ach cell used in the time integration are derived from jump conditions usually
defined in the time domain. In the present case, however, it advantageous to start with
jump conditions in the frequency domain and derive the expressions for the tangential fields
on the impedance faces of the cells involved. Then, the time-domain tangential fields are
derived from their frequency—domain counterparts through Fourier transformations.

Figure Al.1 shows a cell in the computational grid. The tangential fields for this cell
with one of its é—constant faces being an impedance surface will be derived. Derivation for
n- and (—constant faces are identical. The jump condition across the positive characteristic
as depicted in Figure A1.1 may be expressed as:

z* (B - A*) =éx (8- E*) (A1.30)

where the field quantities bearing superscript ‘+’ are defined at the centroid, those with
asterisk on the faces of the cell, and Z7 is the characteristic impedance of the material
filling the cell. Equation (Al.3a) basically relates the discontinuities of the electric and
magnetic fields across the eigenvalues At = c|¢| of Maxwell’s equations where ¢ is the
speed of light in the medium. For both the scattered and total fields, (A1.3a) assumes the
same form. However, it is meant to present scattered fields here. In terms of the scattered
fields, (Al.1) may be written as follows:

£ x [§ x (E* + E_)“)] = —né x (B* + HY) (A1.3b)
where 7 is given by (A1.2). From (A1.3) € x H* is obtained.

L Ex(Wr-wW
{x H™ = (77+Z+ ) (Al.4)

where Wit = Z+Hi+ — € x Ei+. 1t is advantageous, however, to find £ x E* from a jump
condition similar to (A1.3a) in the time domain. This will be done later. Inverse Fourier
transformation of (A1.4) results in the desired expression for the tangential magnetic field
on the impedance face of the cell in the time domain which is as follows:

Ex HE (1) = /tF(t — ) x W(r)dr
° (AL3)
+ / F(t =) x Wi(r)dr — € x H'(t)
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where:

. FU)=$“1(ZJ;n) ,

W=F1W) ,

olnl = 6Ny (w) + YNy(w)
R [77] - D(LU) )
o] = YN1(w) + §Na(w)
Im{n] = ) ,

D(w) =1+ tanz(koda) ta.nh2(kodﬂ) N
Ny (w) = tan(kode)/ cosh®(kodB)
Na(w) = tanh(kodB)/ cos?(koda)

= 2[5 (Relpd + 1)
p= /2 (~Relud + luc)

v /5 (R[] 4 ]E])
= /1 (-re#] + |£)
I

¢
\\
Impedance surface

Fig. A1.1. A Cell with Impedance Face.

The plus signs apply to a wave traveling in the positive coordinate direction, while
the minus signs to a wave traveling in the negative coordinate direction.

For a time-harmonic or narrow-band plane wave excitation, provided the steady state
solution is desired, a fictitious dynamics for n(w) will be constructed whose inverse Fourier
transform can be evaluated in a closed form. The following two cases will be considered
here:

ol




Zt4+R
1) —HUI‘; U <0
In this case we let:
N(w) =r —iwz

(A1.6)

where r and z are constant over the frequency band of interest. The straightforward
application of an inverse Fourier transform results in the desired function in the time

domain
F(t) = ge™®
where:
1
a=—
z
p T + Zt
T

Z~ +Re
2) —[—]Uffn L >0
n(w) in this case will be considered to be:

!

! .I

= —_7—
nw) =r »

The inverse Fourier transform of (A1.8) results in the following function:
F() = cb(t) + ae™®

where:

—Z++r’
_ 1
r+2Z+

For notation simplification we use (A1.9a) for both cases with ¢ = 0 for Case 1.

A plane, time-harmonic incident field may be represented by:
Ei(t) = fcos(k - R — wt)
Hi(t) = <Z>——1— cos(k - R — wt)
zZ+
From (A1.10), Wi(t) may be constructed:

Wit) = ZTH(t) — £ x £'(t)
= &cos(K - R — wt)
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wherew=q3+fxé.

Equations (A1.9), (A1.10), and (A1.11) are substituted in (A1.5) to obtain the mag-
netic field lux term in the time domain for the impedance surface:

CEx () = cf x WH(E) +cf x Wit)
t
+ / —b(t=)§ 5 WH(r)dr
a [ eTTEX W) . (A1.12)
t
+ a/ et E x Wilr)dr — € x Hi(t)
0

The first integral in the right hand side of (A1.12) will result in a recursive algorithm.. The
details follow. Let:

t :

Ft) = / M= X WH(r)dr (A1.13)
0

T (t) may be regarded as a formal solution to the following first order differential equation:

% 10T =ExWH(r) . (Al.14)

It is found that the following implicit algorithm can provide accurate solution to T for a
large range of values of &: ~

T(t+ At) - T(t) L b
At 2

4

[T(t+Aa)+T()] = %[5 x WH(t+At)+ Ex WH(2)] . (AL.13)

This will result in the following recursive formula for computing f(t) for the discrete time
variable:

7 - 2-baty A [(Ex W)™+ (€ x W) (A1.16)

where:

T, = T(nAt)
To=0
(£ x WH)" = £ x WH(nAt)

The second integral in (A1.12) can be evaluated in a closed form. Let:

Ut) = / e E 5 Wi(7)dr
0 (A1.17)

t
=£x W/ e=2(t=7) cos(k - R — Wr)dr

0
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Then it may be shown that:

- R o~ e—bt R r=t—¢
U(t) = £ x W———— | cos(k - R — wT)
be i [ ret-¢ ] = (A1.18)
= & [+ T
Vb +w? [e 6 (T)] r==¢

Expressions (A1.16) and (A1.18) are substituted in (A1.12) to obtain the desired magnetic
field flux:

£ x H (1) = c€ x WH(t) + e x Wi(t) +aT (t) +al () — € x Hi(t) . (A1.19)

The results in (A1.19) may be presented using the discretized time variable n:

i

(E X ﬁ‘)n = c(é X W*)n +c(£x W")" +aT, + aln - (é xﬁ) (A1.20)

where U, = U(nAt).

The electric field flux, £ x £*, may be obtained directly from the cross product of the
unit vector £ and the following jump condition in the time domain:

£ — & = £x [z+(ﬁ‘ - ﬁ+)] . (A1.21)




— A2. Treatment for Anisotropic Media

Radar absorbing materials, such as filled honeycomb structures, may exhibit consid-
erable anisotropy in their response to electromagnetic fields. Treating these structures as
continuous media requires tensor definitions for € and p. Thus, the interface fluxes derived
earlier for isotropic media need to be generalized. We start from the conservation-law
form of Maxwell’s equations in curvilinear coordinates (&,1,¢), equation (32):

JORICT AR 1 ARG AR
ot \J EN\-ExHIT) \-ixH|T) O \-(xH/T J

where Q = (B,D) and S = (0,—J). As in the isotropic case, we shall solve the one-
dimensional Riemann problem associated with one coordinate direction, and we consider
that the finite—volume cell is bounded by surfaces of constant &, 7, and (.

Writing E = e 1D and H = ,u’lé , one finds, for example, that the {-derivative term
above takes the form:

d ExE/J) a([ogxe—l]Q>A6<Q)

— e/ = — 2 Z)l== 4= , A2.1
7 (S5 ) = w ([ E05007) 2 7 (42.1)
where the position dependence of € and p is accounted for in the 6 x 6 matrix A. In our

finite-volume formalism, € and g areYaken to be constant inside each cell, and the fields
B and D are evaluated at the cell centroid.

Waves that propagate along the { direction correspond to eigenvectors of A. As we

— —

shall see, these eigenvectors are pairs BQ,EQ) having both B, and E, lying in the

plane perpendicular to ¢ at the interface between neighboring cells. Because the material
properties may vary from cell to cell, these eigenvectors in general also change across the
interface.

In terms of the 3 x 3 matrix S = (fx y"l) (5x 5‘1), the right eigenvectors ro and
eigenvalues Ao on one side of a {-interface can be derived in the form:

=\ Z.% s =\ =79 ) T\ =259 s
% . (42.20)
1’4=<v2>'7'5=(€£)'7’6=(0‘)
2101 )" 0/’ [Z3
)\1 =—A3=\/;1+\/C%—62;A2 =-—/\4=\[—c1—\/c§—c2; A5=>\6'=0 y (AQQb)

1
a=3z (S11 + S22 + S33) 5 €2 = —=S12521 — S13S31 — S23532 + 511522 + S22533 + S11533
(A2.2c)

Zi = /(07 - € V02) + (01 - p101); Zo = /(b1 - €7161) [ (02 - p7102) . (A22d)
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The physical unit vectors ¢; and 9, are perpendicular to ¢, and they are determined by
the requirements:

15, =0 . (A2.3)

by p g =D - uT oy =D €710y =Dy - €
The eigenvectors rs and ¢ do not correspond to propagating waves because As = A¢ =0,
and they are not required in constructing the interface flux.

As in the isotropic case, the basic relations constraining the interface flux are that
the difference between the centroidal values of B and D and their values at the interface
must lie along the eigenvectors r4 (a = 1to4). Coupled with the condition that the
components of E and H tangential to the interface must be the same on either side, these
relations determine the following expressions for the interface fluxes:

£y pr o —HE D) (B B+ N x 8- {Ft + 5 - B+ N <
£-(a+ +a) x (b+ +b-)

?

(A2.4a)
Ex H* =
WZF2Fat+272;a)-[EY—E~=M x €|+ {(Zf Z5 6 + 27 Z767)-[E* — E-—M x §]
§-(Zfzfar + X7 Zy7a) x (21 236+ + 27 2575-)

- (A2.4))
where the vectors & and b are given by:
= Z1(b 1) +A22(17“2 -+ 1)P2 5= Z(% ‘5)5“1 +A22(17:z - ()b (42.5)
Z2,Z,€ - (51 x Va) Z1Z2€ - (91 X ©2)

and the vectors M and N are:

-

M = 272 [at (B A+ B O] + 272 [ (E i+ B E O] (4260)

—_ -

N= [z#(E‘+ 7)) + BB+ é)] + [zr(E- )+ 5 (B 5)] . (A2.70)
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Appendix A3. Geometry and Gridding Techniques

This appendix contains Sections 12-14 of a Navy contract report, NAWCWPNS TP
8220, prepared by the Computational Fluid Dynamics group at Rockwell Science Center.
The following page numbers have been taken directly from that report.
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12.0 GEOMETRY FORMULATION DETAILS

The geométry formulation in UNIVERSE-series unstructured grid codes is very
flexible and, in general, can handle any type of element (conservation cell). In partic-
ular, we have included three types of cells at present. These are 1) the hexahedral cell,
2) the triangular prism cell, and 3) the tetrahedral cell. The details of the geometry

treatment for these three cell types are given in this section.

12.1  Local Node Numbers and Coordinates

A cell type is defined by the number and placement of its vertices. A complete
definition of a cell type would also include, in addition to the vertices, any other
nodes needed to define the variation of the geometric variables z,y, z in the cell (see
Fig. 4.2 on higher-order elements). Taken together, the vertex nodes and other nodes

can simply be referred to as the nodes of the cell.

We assume a local coordinate system for each cell (€,n,0, Fig. 4.1). The vertex
node numbers are defined in terms of an ordered set of integers and the values of the
local coordinates at each vertex are defined for each cell type in Figs. 12.1, 12.2 and
12.3.

12.2 Shape Function

The geometric “shape function” Ni(€,n,0) was defined in Egs. 4.9-11 for the
three cell types. Each cell node is associated with its own shape function which is a

A multidimensional polynomial in &,7,0:
, K
Ni(e,mo) = 3 part' By Hgn® (12.1)
k=0

The polynomial coefficients can easily be obtained by solving the I equations result-

ing from setting

Ni(&iyniroi) =1, (12.20)
Ni(&jinjr0j) =0, J#t (12.20)
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—» 3

2 3
6 7
0 T 6
o]

VERTEX £ 0| c
0 -1 -1 -1
1 +1 -1 -1
2 -1 +1 -1
3 +1 +1 -1
4 -1 -1 +1
5 +1 -1 +1
6 -1 +1 +1
7 +1 +1 +1

Figure 12.1 Vertex nodes and coordinates for hexahedron
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1 +1 -1 -1
2 0 +1 -1
3 -1 -1 +1
4 +1 -1 +1
5 0 +1 +1

Figure 12.2 Vertex nodes and coordinates for triangular prism
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M 2
3
0
_'
(o5 .
Vertex E | o]
0 -1 -1 -1
1 +1 -1 -1
2 0 1 -1
3 0 0 +1

Figure 12.3 Vertex nodes and coordinates for tetrahedron
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When the three-dimensional geometry polynomial is built by forming the product of .
two or more lower-dimensional polynomials (Eq. 4.10, Eq. 4.11), the three-dimensional
shape functions can also be constructed from the appropriate lower-dimensional shape

functions.
12.2.1 Local Faces and Vertices

Each face of 2 cell is defined by which vertices belong to it (in terms of local
node numbers). The faces and their corresponding vertices are identified for each of

the three cell types in Figs. 12.4,12.5 and 12.6.

12.2.2 Cell-Face Metrics and Normals

The method used to compute cell-face normals was outlined in Section 4 in the

paragraphs following Eq. 4.11. A more detailed description is given below.

Given the geometry polynomials (Eq. 4.9, Eq. 4.10, or Eq. 4.11), the tangents to
the local coordinate directions can be defined by

7=znj+ ynk + zql (12.3)
Next we identify two vectors in the plane of the cell face by choosing suitable linear
combinations of the above.
Vi tn t2 113)
Y _ 12.4
(V2> (121 t22 ta23 Z. (12.4)

The transformation matrix in the above can be defined as T

T=(t“ 12 tn) (12.5)

ty; taa t23

lm'

and is defined for each face of each cell type in Figs. 12.7, 12.8 and 12.9. The T

matrix elements are selected appropriately to account for the fact that {,n,o range,
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in each cell, from —1 to +1 in many cases. The cross product of V: and V, defines

the cell-face nonpal.

12.3 Cell-Face Quadrature Points

At every cell face, the integral of any quantity Q over that face can be replaced,

up to the desired order of accuracy, by a suitable quadrature formula

//Q(S,t)dsdt= z C; Q(si,ti) (12.6)
¢ quads.

where s,t are the representative running orthogonal coordinates tangential to the
face, and subscript i denotes a quadrature point. The coefficient C; is the “weight”
assigned to the i-th quadrature point. For the three cell types being considered, one
encounters only two types of cell faces — “square” or “triangular” (in terms of the
running coordinates s and t, as well as the local coordinates &,7,0). Tables 12.1 and
12.2 represent four-point Gaussian quadrature points and weights for such “square”
and “triangular” cells. This leads to fourth-order accuracy in the evaluation of cell-
face integrals. Figure 12.10 presents these quadrature points diagrammatically (not

necessarily to true scale).

—~0.577350269189626 —0.577350269189626 0.5

+0.577350269189626 —0.577350269189626 0.5

—0.577350269189626 +0.577350269189626 0.5

+0.577350269189626 +0.577350269189626 | 0.5

Table 12.1 Gaussian quadrature points for “square” face
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s t C

—0.487831473351 | —0.689897894859 0.318041443825

+0.487831473351 —0.689897894859 | 0.318041443825

_0.204988807440 | +0.289898127317 0.181958556175

+0.204988807440 +0.289898127317 | 0.181958556175

Table 12.2 Gaussian quadrature points for “triangular” face

12.3.1 Special Cases

While, in general, the four-puint Gaussian quadrature is employed for three-
dimensional problems, simpler formulae (with fewer quadrature points) can be used
sometimes without any loss of accuracy. For example, with hexahedral cells, the
midpoint rule is sufficient for one-dimensional problems in the one significant direction
being considered. For two-dimensional problems, a two-point quadrature is sufficient
for faces spanning the third direction (the two points are along the line that bifurcates
the cell in the third direction).

12.4 Cell edges

The need to determine the intersection between interior surface geometry ele-
ments and elements that define a cuti;ing plane or surface for postprocessing purposes
required a numbering system for cell edges to be added to the book-keeping frame-
work. Figures 12.11, 12.12 and 12.13 illustrate the vertex nodes and cell edges for
the three types of cells considered in this report.
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12.5 Calculation of Cell Volume

The cell volume is related to Egs. 4.18 and 4.19
V=/// 6-(zj+yl}+zi)dl’ (12.7)
v

corresponding to i = 0in Eq. 4.18. The volume integration can be replaced by surface

V=///V(6-Xo)dv
- / /S (X, -7)dS 0z

The surface integral can, in turn, be converted to a quadrature formula based on
Eq. 12.6.

integration.

12.6 Strong-Conservation-Law Form in General Coordinates

In Section 5, the strong-conservation-law form was introduced for hyperbolic
systems of conservation laws in Cartesian coordinates. In future editions of this

report, the invariance of that form under coordinate transformations will be discussed.

12.7 Integral and Strong-Conservation-Law Forms

There is a clear and useful geometric analogy between the integral form and
the strong-conservation-law form of the equations. This will be elucidated in future

editions of this report.

12.8 Preservation of Uniform Flow

Physically, uniform flow remains uniform. Numerically, this simple fact may
not be true. In other words, when a numerical method is applied to update the
solution from time step to time step with uniform flow as the starting solution, on
nonuniform grids only a careful construction of the algorithm will guarantee that the
numerical solution does not introduce spurious disturbances into uniform flow. All
that is required is that formulae of high enough order of accuracy are employed in the

boundary quadrature procedure. These issues will be considered in detail in future

editions of this report.
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Face [Vertex 0 |Vertex 1} Vertex 2
0 o | 1 2
1 | 0 1 3
2 | 1 2 3
3 | o 2 3

2
0 1

Face 1
2 2
1 0 1
Face 2 Face 3

Figure 12.6 Faces and their vertices for tetrahedron
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i 2 3
Vz Face 0
y 7 [2]0]0]
e "o Tz]0]
0 1

4 5
2 h 3
Face 1
[2]0]o]
6 7 T=
Lo]2]o]
V2
0 1
V1
4 5

Figure 12.7 Faces and their transformation matrix for hexahedron
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Figure 12.8 Faces and their transformation matrix for triangular prism — continued
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2
5
Face 4
[-1]2]0]
T=
0 t e fofz)
3 4

Figure 12.8 Faces and their transformation matrix for triangular prism — continued
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Face 0

0 1
2‘\:4
Face 1
1 1‘ ‘\
- =11
T=2 2 .
-1 1‘2J
0 1

Figure 12.9 Faces and their transformation matrix for tetrahedron
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Face 2

(%7

Face 2

Face 3

Figure 12.9 Faces and their transformation matrix for tetrahedron — continued
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C o _

c d Quadrature
points for
4-vertex face

L o

a b
Quadrature
points for

3-vertex face

Figure 12.10 Gaussian quadrature points for “square” and “triangular” faces
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WN=-=2 00 b 00N ~NO
~NO AN WNDNOW

Figure 12.11 Vertex nodes and cell edges for hexahedron
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Edge From Node To Node
0 0 1
1 0 2
2 1 2
3 3 4
4 3 5
5 4 5
6 0 3
7 1 4
8 2 5

Figure 12.12 Vertex nodes and cell edges for triangular prism
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>&
Edge From Node To Node
0 0 1
1 0 2
2 0 3
3 1 2
4 1 3
5 2 3

Figure 12.13 Vertex nodes and cell edges for tetrahedron
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13.0 MESH GENERATION

The computer code known as TRIM3D in Phase I was renamed UNIVG in Phase
1. This naming convention is used to conveniently refer to the UNIVERSE-series suite
of software. The unstructured surface grid, viscous triangular prism near-surface
grid and setup of boundary conditions are generated interactively in UNISG. The
| grid generator for tetrahedral volume cells is UNIVG. The flow solver is UNIV. The
postprocessing mode of UNIV is referred to as UNIVP. :

The computer codes UNISG and UNIVG, based on the two layer method to
generate 3-dimensional unstructured grids for viscous and inviscid flows have been
developed at Rockwell Science Center. The boundary of the computational domain
is divided into several patches. The geometry of each patch is described by specifying
a sufficient number of non-intersecting lines on the patch. Each line, in turn, is
described in terms of a sufficient number of points on the line (Fig. 13.1). The patch
information can also be provided in the form of IGES NURBS surfaces. From this
information a parametric representation (s,1) of the surface is developed where s and
¢ are the local running coordinates in the plane of the surface. For convenience, the
parameters § and t are chosen to take values between 0 and 1, where s = 0,s =1,
t =0andt = 1formthe segmented boundary of the patch. Nodes are then distributed
on these four boundary lines satisfying the user-specified clustering requirements. In
the code, the first and last lines of input patch information correspond to t=0 and
t=1 respectively. Presently, the code requires that the number of nodes on at least
any one pair of opposite sides(s=0ands=1lort= 0 and t = 1) be equal. This

restriction will be removed in the future.

Internal lines are generated by connecting corresponding points on a pair of
opposite sides. Each internal line is then divided into line segments. The line segment
length at the ends of an internal line is determined by the average of the length of
the line segments on the boundary of the patch that intersects the given internal
line. The length of the remaining line segments on an internal line is obtained by
smoothly blending the lengths of line segments at the ends. Triangular elements are

then generated by connecting the line segments according to the recipe described in

Fig. 13.2.
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The next step is to generate the boundary that separates the viscous and the
inviscid regions. For this purpose points are generated along each patch boundary
at a specified distance along the normal to the patch. These points are connected
to form the boundary of the viscous region. This boundary is then smoothed using
an elliptic smoothing procedure and transfinite interpolation is used to generate a
smooth surface that is enclosed by it. Projection of triangles on the patch surface
onto the newly generated smooth surface is performed. Corresponding triangles on
the two surfaces are connected to form triangular prisms. These prisms are first
broken into smaller prisms and then divided to form tetrahedra. This process is
carried out in such a way that the grid clustering required to resolve small scales
near the body surface is achieved. All the connections between patches, direction
of volume cell generation, and grid clustering information are interactively setup in
UNISG and automatically output in a form compatible directly with UNIVG.

In UNIVG, the “advancing front” method (Ref. 45) is used to fill up the com-
putational domain with tetrahedra starting from triangular elements on the viscous
boundary. This technique requires 3peciﬁcation of an initial surface divided into tri-
angular elements. The boundary of the computational domain is used as the intial
surface of the advancing front. The smallest element on the surface is replaced by
the three sides of a new tetrahedron constructed with that element as the base. The
fourth node of the tetrahedron is obtained either from one of the existing nodes or

by creating a new one (Fig. 13.3).
Grid generation in the inviscid region consists of the following steps:
(1) Define the boundary patches (including body surface and outer boundary).

(2) Triangular elements are then generated on each patch based on user supplied

information regarding the number of points and mesh streching.
(3) These triangular elements are used as the initial surface of the advancing front.

(4) Tetrahedral cells are then constructed with the triangular elements as bases. In
order to avoid large cells intersecting with small cells, the smallest triangular

element from the list of faces is always used.
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(5) Sel;ct or create a point to form a tetrahedral cell from the base triangular element
(ABC, in Fig. 13.4).

a.) The point D can belong to a neighboring triangular element (ACD) as long
as it can generate a tetrahedron satisfying certain built-in constraints. (The
angles between the base triangular element ABC and newly formed trian-
gles ABD, BCD, CAD should be less than 135 degrees and larger than 10

degrees.) See Fig. 13.4a (top figure).

b.) The point D can be selected from an existing grid or from a list of points
supplied for the purpose. See Fig. 13.4b (middle figure).

c.) Otherwise, a new point D located on the line which is normal to the base

triangular element at its center can be created to form the new tetrahedron.

See Fig. 13.4c (lower figure).
(6) Check whether the newly formed cell intersects with any already existing cells.

(7) i no suitable point can be found, some old cells have to be removed,and repeath
step ()

(8) The new faces ABD and BCD from (5-a) or ABD, BCD, CAD from (5-b) and
(5-c), the new cell ABCD and new point D from (5-c) are all added to their

respective lists (face, cell and point).
(9) Delete the old face (ABC) from the list.

(10) Check if there are any triangular elements remaining in the front . If yes, go

back to step 4.

The two most important aspects of UNIVG are 1) data structure and 2) the
logic to check whether any two tetrahedra intersect with each other. These aspects

 are disscussed in the following section.

13.1 Data Structure

In order to find the smallest triangular element, points in the neighborhood and
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neighf);m'ng triangular elements efficiently, the data structure for the faces, and the

grid points is arranged as follows:

13.1.1 List for The Front Face

A binary tree structure is used to form the front face list. The ordering of the
tree is arranged such that the area of the father face is smaller than the face of the
two sons. Figure 13.5 shows a binary tree of this form. The area of each face and its
position are also shown in this figure. It is noted that the position of the two sons
are located at Isonl = Ifather x 2 and Ison2 = Ifather x 2 4 1, respectively. For
example, Face D located in position 4 has two sons located at position 8 (H) and 9
(I). A face should be added or deleted without altering the binary tree structure. The
ideas of the heap-sort and heap-search algorithms (Ref. 46) are used in UNIVG.

a) Adding a new face to the face list:

A new face is always added first at the end of the tree. Then, the internal order
of the binary tree is rearranged by ¢omparing the face areas of fathers and their sons.

This procedure can be described as follows:
1) A face J with area 4.0 is to be added to a binary tree in Fig. 13.6.
2) Place J at the end of heap list (10 in this case).

3) Find the father’s position of 10 by using I father = Ison/2. Therefore the

father’s position is § and the face is E in this case.
4) Compare the area of faces J and E.

5) If the area of J is less than that of face E, interchange the position of father
and son (see Fig. 13.6a).

6) Unless J is at position 1 (top of the list) go back to (3).
b) Delete a face from the front face list:

A face can be removed from any position from the tree. Then, the internal order

of the tree is re-established by comparing the area of the face of the father and son.
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li Find the position from which the face is to be removed from the tree. For

example, we can consider face A at position 1 in Fig. 13.6b.
2) Place the face stored at the end of the tree at this position (1 for this case).

3) Find the two sons location by using Isonl = Ifather x 2 and Ison2 =
Ifather x 2+ 1.
4) Determine if the father and son’s position should be changed by checking
the area of the father face and two sons’ faces.
if
(Area(father) < min(Area(sonl), Area(son2)) : no change

else

change father’s position with the smaller area son's position.

5) Repeat step 4 until no change is regired (Fig. 13.7).

In this binary tree, the face with smallest area will always remain at the top of

the list and can be used as the next surface to be removed.

13.1.2 List for Points in the Neighborhood

An octree data structure is used to efficiently locate points in a neighborhood.
The fist octant is determined from the boundary of the computational domain. At
most, eight points are stored in each octant. If a ninth point falls into an octant, then
it is subdivided into eight smaller octants. This procedure is continued until an octant
with vacant stdrage is found. Figure 13.8 illustrates this process. A new point I is
added and it falls into octant 1 which already contains eight points A.B,C,D.EF,G,H.
Therefore octant 1 will be divided into eight smaller octants (octants 2-9). The newly
added point I with old points D,E,F are relocated in octant 2. In the UNIVG code ,an
array JOCTR(11, M X OCT) is defined to store the points. The variable MXOCT
is the maximum number of octants allowed. For each octant 10C, the following
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information is stored.

IOCTR(11,I0C) = -1 : the octant is full

IOCTR(11,I0C)=0 : the octant is empty

IOCTR(11,I0C)>0 : the number of points stored in this octant
IOCTR(1:8,I0C) : point numbers are stored here if IOCTR(11,10C) > 0

The maximum and minimum z, y, z are also stored for each octant. By using this
octree, the neighboring points within some specific distance of a given point (z,y,2)

can easily be determined.

13.1.3 Linked List Between Point and Faces

In an unstructured grid generation code, it is important to determine the faces
that surround a given point. In order to do that, an address pointer array
“LPION(IPONT)" ’
for each grid point IG is first allocated. The faces surrounding point “IG™ are saved

in an array LFAPO(8,IG). The prdcedure to find faces surrounding a given point
IG is described below:

1) Find the address related to the given point IG.

IADRES = LPION(IG)

2) LFAPO(8,IADRES) > 0 defines number of stored faces.
LFAPO(8,IADRES) < 0 implies that next face number surrounding the grid
point IG is continued at the address abs(LFAPO(8,IADRES)).

3) LFAPO(1: 7,]IADRES) = 0 defines an empty location
LFAPO(1: 7,IADRES) > 0 denotes face number for face which surrounds the
point IG. This method is illustrated in Fig. 13.9.
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13.2 Check for Intersecting Faces

In the process of generating cells, no two faces must intersect each other. This
condition can be satisfied only f no side of either face intersects the other face (Fig-
ure 13.10). A total of six conditions (One each for the six sides that make up two
triangles.) have to be checked to make sure these two faces do not cross each other.
With the notation given in the figure, determine whether a side §a (connecting Zs
and T5) intersects the face g1 92 (£1,%2 73). The intersection point of line. (Z4Zs) with

the plane defined by ), T, and T3 is given by

= @) (3 _ =
...I=f4+(gl -92) “(xldz‘i)gs
(!thz)‘gs

The segment (£4Ts) intersects the triangle (Z1,Z2,%3) if 1 belongs to the triangle
itself. This procedure leads to three conditions for each triangle. If all six conditions

are satisfied, then the two faces do not cross.

13.3 Grid generation for viscous flow

1) Follow the first three steps of the inviscid grid generation.

2) Generate the boundary of the viscous region by moving the patch boundary along
its normal a specified distance «d” (Fig. 13.11). Since the normal at a point is
pot uniquely specified, an average of the normals to the triangles that meet at
the given point is determined by taking the average of the normals to the two
adjacent triangles that differ the maximum. A point is then generated at a given

distance along this normal.
3) Employ an elliptic smoother to smooth the boundary.

4) A smooth surface enclosed by this boundary is generated using transfinite in-

terpolation. This process involves creating a map between the local surface

coordinates (s,t) and the cartesian coordinates (Z,¥, z).

5) Project the triangles on the body surface patch onto the surface generated in
step 4. This is done by Jocating points on the new surface at the same (s,t)
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locations as the (s,t) coordinates of the vertices of the triangles on the body

surface patch.

6) At this stage the newly generated points for all the body surface patches are
checked for positive distance from the body surface (Fig. 13.12). Points with

negative distance from the body surface are corrected by a trial and error pro-

cedure.

7) Corresponding triangles on the two surfaces are connected to form triangular
— prisms. Any occurance of twisted prisms is rectified by moving the points in-
volved using an elliptic smoother. The procedure for checking whether a trian-

gular prism is twisted or not is given in Figure 13.13.

8) The triangular prisms are broken into smaller prisms to ensure that the flow in

the boundary layer region is properly resolved (Fig. 13.14a).
9) The smaller tringular prisms are divided into tetrahedra (Fig. 13.14b).

Figure 13.15 shows the body surface, smooth surface and projected triangles of

the space shuttle nose region.
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Figure 13.1 Surface grid generation
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1) start with (A,B).
2) There are 2 choices: -

a) A can be connected to B’

b) B can be connected to A’
3) compute lengths of AB' and BA’ and choose the shorter one; for e.g., AB'.
4) since B is not connected yet, continue the process with (A,B). '
§) 2 choices :

2) A can be connected to C’

b) B can be connected to B’
6) compute lengths of AC’ and BB’ and choose the shorter one; for e.g., BB'.

7) since both A and B are now connected, continue the process with (B,C).

Figure 13.2 Recipe for generating triangular elements
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— — ——: initial front surface divided into tringular elements.
ABC & -CBD : two of the initial surface elements.

E & F : newly generated nodes.

ABE , BCE , CAE : new clements that replace ABC.

CBF , BDF , DCF : new clements that replace CBD.

BFE & FCE : new elements generated by connecting two existing
They replace the elements BCE and CBF.

Figure 13.3 Advancing front technique
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Figure 13.4 Construction of new element
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Figure 13.5 Binary tree
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Figure 13.6 Addition of new face to binary tree
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Figure 13.7 Removing a face from binary tree
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Figure 13.8 Construction of octree
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LFAPO
LPION (IGRI)
1
2
3
4
LFAPO (8, IADRES) = IADCNT
1G > IADRES |— o—> 50 : All faces are found
<0 : Faces are continue
at ABS (IADCNT)
TGRD
IADCNT —> <

Figure 13.9 Linked list between point and faces

156




NAWCWPNS TP 8220

b

2
2|

X

0
m

Figure 13.10 Intersection of two faces

157




NAWCWPNS TP 8220
d
— Patch boundary
(a) yad ~
i A \\ Boundary of
e \ the viscous
// B’ \ region
i c L
d v -
7 d //
, /7
B s
c 7
Ve
7/
/
Ve
7/
e
/

Figure 13.11 Boundary of the viscous region
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D

> > -
FOR AABC, (AB x AC). AK >0 has to be satisfied.
Same as all other triangle ACD, ADE..etc.

Figure 13.12 Criterion for accepting newly generated point A
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—_— —

—
(A°B'x A'C") AA has to be negative

Figure 13.13 Criterion for accepting newly generated triangular prism
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Figure 13.15 Viscous grid for the Space Shuttle nose region
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o 14.0 TOPOLOGY TREATMENT

This section describes various topology issues related to connectivity of nodes

into cells, cells common to a node, cells with a common face, how cells may be

subdivided, how links may be removed, etc.

14.1 Node Locations and Nodes of Cell

The computational unstructured mesh is defined by 1) specifying the set of nodes
and their locations (z,y,z coordinates and optionally their nodal velocities z,y, z),
and 2) specifying the set of nodes that comprise each cell. These node numbers
are called the global node numbers. Each cell has an ordered collection of nodes
numbered locally. When the global nodes of each cell are provided, they must be
given in the same order as the local node numbers. Therefore, given any local node

number, the corresponding global node number is easily determined.

14.2 Elimination of Redundant Nodes and Cells

o

Let us make a set of all nodes that are part of at least one cell in the total
collection of cells given. This may be a subset of the collection of nodes for which
the locations have been provided. The extra nodes in the larger set are those nodes
not needed to define any cell. These nodes (and their locations) may have been
generated during the mesh generation process but were not used because their inclu-
sion would have resulted in cells that were somehow unsatisfactory. The ability to

remove redundant nodes is provided for in the unstructured-grid UNIVERSE-series

formulation.

During the process of removing links, a topic to be covered later in this section,
some cells may become degenerate. This may happen in two ways: 1) the number of
distinct global vertex node numbers is less than four; 2) the number of distinct vertex
node locations is less than four. Case 1 deals with a “logically” degenerate cell and
case 2 with a “physically” degenerate cell. Removing these cells become redundant
for the purpose of computing the dependent variables. Removing such redundant
cells corresponding to case 1 is available in UNIVERSE-series unstructured-grid for-

mulations as part of various “grid editing” options.
g g op
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14.3 Cells of Given Node

Given the nodes of each cell, the inverse map can be constructed. This provides
knowledge of which cells include the given node. While each cell has the same number
of nodes (assuming the same cell type for every cell), the number of cells that include
a given node varies with each node. We have verified for linear elements (only vertex
nodes) that the sum of cells associated with each node is equal to the number of cells

times the number of nodes per cell which is a somewhat surprizing statement at first

glance.

14.4 Common Faces

Each face is made up of a specific set of local node numbers, each of which is
mapped onto a global node number. Using the knowledge of nodes of a cell and cells

of a node, the cells that share a common face can easily be identified.

Faces are numbered sequentially with cell number. The first six faces belong to
the first cell, the next six faces beldng to the second cell, etc., for the hexahedral cell
type. Therefore, face numbers are related directly to cell numbers. A face shared by
two cells sports two face numbers, one that identifies it as part of the first cell and

another that identifies it as part of the second.

A given face of a given cell has a number of vertex nodes. Each vertex node is
associated with many cells. Out of these, one cell is the cell pointed to by the face
number being considered. There is not more than one more cell which is common to all
nodes of the face. In this fashion, the cells that share a given face can be determined.
It then becomes a relatively trivial matter to identify which face of the second cell

" is identical to the face being considered. Thus the face number corresponding to the

neighbor cell can be identified, given the face number of a particular cell. Of course,

at a boundary, a face can only be part of one cell, the interior cell.

14.5 Cell Types

A major enhancement added during Phase III was the ability to deal with dif-
ferent cell types in the mesh. In fact any cell could be of any of the types allowed by
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UNIV (tetrahedral, triangular prism or hexahedral). The user specifies all the types
that are expected to be encountered in the mesh. At the time of reading in the mesh,
UNIV sets up an cell type identifier for each cell. Each cell type has an associated C
siructure that completely describes the local book-keeping information for that type.

Whenever necessary, a cell refers to its type. This, in turn, points to all attributes of

that type.

14.6 Cell Division

For various reasons, a cell may have to be divided into two cells. In Phase I,
cell division capability had been developed for the triangular prism cell type for use
in two-dimensional inviscid store-tracking studies. Figure 14.1 displays a situation
where one face of a triangular prism cell has been divided. If the face is common to

two cells, this leads to both cells being subdivided into two cells each.
The following book-keeping details must be kept track of:

1. New nodes are introduced (with global numbers greater than the existing maxi-

mum).

9. New cells must be constructed (with cell numbers assigned to be greater than

the existing maximum values).

3. Two existing cells must be redefined to account for their being made of different

nodes after subdivision.
4. “Cells of node” must be recomputed in the vicinity of the subdivided cells.
5. “Face to face” correspondence must also be reestablished locally.

Such a grid “editing” capability has been developed. The cell division capability
is currently not being used (at end of Phase III).

14.7 Link Removal

It is sometimes desirable to remove links. In Fig. 14.2, the short link ab is an

example. The link can be removed by moving one of its nodes towards the other. In
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this e:Ea;mple, cells 2 and 5 become degenerate and must be removed from considera-
tion. Node b merges with a and therefore a 1s used to replace b in all cell definitions.
Consequently, node b becomes redundant and can be removed from consideration if

necessary. The book-keeping steps are given below.

1. Node b for all cells associated with b must be replaced with node a (nodes of cells

3 and 4 must be redefined).
9. Collapsed cells 2 and 5 must be removed from the database.

3. If node b is not removed from database and must be used for some purpose, the

Jocation coordinates of b must be modified to coincide with node a’s position.
4. “Cells of node” and “face of face” must be recomputed in the local region.

Such a grid editing capability has also been developed. The link removal capa-
bility is currently not being used (at the end of Phase II).

14.8 Og:}ree Sort and Search

The octree sort and search procedure applied to spatial data is the three-
dimensional equivalent of the binary sort and search for one-dimensional data. We
exploit this heavily to search efficiently for a point nearest to a given point, 2 cell
that contains a given point, intersection of an interior surface with cells, association

of mesh point location with surface boundary location, etc.

We begin by sorting available mesh points into the octree spatial data structure.
Typically, we restrict the maximum number of physically distinct mesh points in any
given octree leaf to 8. Duplicate mesh points (different points at the same physical
coordinates) are included and do not have to be discarded in our implementation.
In the following discussion, “leaves” are terminal branches of the octree. Nontrivial
database information is stored only on octree leaves. Octree branches that are not
Jeaves serve only in the role of a “container” pointing to the next level of branching
or subdivision. The two basic procedures that can be applied to the octree database

are as follows:
(2) Given a target point, find the octree leaf that contains it.
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(b) Given a “box” (of given Az, Ay, Az dimensions), find all the octree leaves that

intersect with it.

1) By making use of (2) and (b), it is easy to determine the mesh point (that is in the
octree database) nearest to a given target point (that may or may not be in the octree
database). This is used repeatedly in our grid generation method for constructing

unstructured grids (with tetrahedral or triangular prism cells).

2) We also construct an auxiliary database from the octree database. This is the
list of mesh cells that are associated with each octree leaf. In its crudest form, for
each cell its “container” box is constructed and procedure (b) above is used to find all
leaves that intersect with this box. The cell under consideration is added to the list of
4associated” cells for all these leaves. From this information, the following procedure

can be constructed:
(c) Given a target point, find the mesh cell that contains it.

3) This is accomplished by first using (2) to determine the octree leaf that contains
the target point and then identifying all the cells that are associated with this leaf.
These and only these cells are searched to determine if the target point is contained
within. If none of the cells contains the point, the “nearest” cell from this list can
be identified as that cell for which the normal distance from the point to any of
the cell’s faces is the shortest. This normal distance is defined to be positive when
the point is outside the cell and negative when it is contained within the cell. This
“positive” distance will come in handy in the later section dealing with the idea of

the “alternate” boundary condition.

~ 4) Similar to the database in Item 2 above, we also construct (when necessary) an
auxiliary database that lists the surface elements (or surface cells) that are associated
with each octree leaf. These surface cells are used to describe the geometry of physical
or fluid-dynamic entities that are either at the boundary or in the interior of the flow-
field (and computational) domain. They may also be at mesh-block boundaries.
Using this database, the following two procedures may be defined.

(d) Given a set of surface elements (or even a single one), find the mesh cells that are

associated with the same octree leaves that the surface element(s) are associated
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with.

(e) Given a set of mesh cells (or even a single one), find the surface cells that are

associated with the same octree leaves that the mesh cell(s) are associated with.

5) Procedures (d) and (e) lead to a very efficient way of isolating a few surface elements

that correspond to a given mesh cell and can be used to define a method to find the

intersection of surface elements and mesh cells:

—

(f) Given a mesh cell, find the intersection of the edges of this cell and a given

surface.

6) Procedure (f) can be used to describe the intersection of the mesh and the surface
geometries. This can be used to generate interior or boundary condition specifications.
It can also be used for postprocessing applications where it 1s necessary to construct

the solution on an arbitrary cutting plane.
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Figure 14.1 Cell division for triangular prisms
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Figure 14.2 Link removal for triangular prisms
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